

Software rollout at scale:

Using gitops to
scale Kubernetes
rollouts

> whoami

Bridging Dev and Ops.

● 20+ years of experience as developer and architect

● Working with Kubernetes 5+ years

● Working with Netic Kubernetes offerings

@langecodein/thor-lange-26b388

Thor Anker Kvisgård Lange
Platform Development Specialist

Agenda
● What is gitops anyway?
● Managing a Kubernetes platform
● Risk mitigation by versioning
● Opportunity versus risk
● Scaling rollouts

What is gitops?

” GitOps leverages Git as the single source of truth
to define every part of a cloud-native system. Once
declared in Git, a GitOps agent (Flux)
automatically applies all code, configuration, and
policies across dev, test, staging, and production
environments.

https://www.weave.works/technologies/gitops/
What is GitOps?

What is gitops?

What is gitops?

reconciliation

source of truth

Traditional CI/CD

● Imperative vs declarative
● CI/CD need credentials to clusters
● No clear audit trail
● No single source of truth

What is gitops?

What is a Kubernetes
platform?

Wait - there is more to Kubernetes?

Kubernetes cluster

Application

Infrastructure

Managing a Kubernetes platform with gitops

Kubernetes cluster

Application

Infrastructure
source of truth

for all

Apply gitops to a single cluster

.
├── applications
└── infrastructure

main

● Single cluster
● Single repository
● Every commit to main changes cluster state

Initial Approach

Lets see how it works…

Demo environment
● All examples running on laptop
● Simple ssh git server running as container image
● Kubernetes clusters based on kind (Kubernetes in Docker)

Application: Podinfo

Infrastructure: nginx

Gitops: Initial approach
Install flux and setup initial reconciliation (for demo
purposes):

flux bootstrap git --url=...

Demo - how does it work?
apiVersion: source.toolkit.fluxcd.io/v1

kind: GitRepository

metadata:

 name: flux-system

spec:

 url: ssh://git@git/...

 ref:

 branch: main

apiVersion: kustomize.toolkit.fluxcd.io/v1

kind: Kustomization

metadata:

 name: flux-system

spec:

 sourceRef:

 kind: GitRepository

 name: flux-system

 path: ./

Scaling to
multiple clusters

Multi-cluster - single repository

.
├── clusters
│ ├── cluster-001
│ └── cluster-002
└── infrastructure

● Multi cluster
● Single repository
● Allow reuse across clusters
● Changes are rolled out to all clusters

main

Extend to multiple clusters

Gitops: Multiple clusters
● Create structure to support multiple clusters
● Reconcile a cluster specific path
● Include common infrastructure

Demo - multiple clusters

apiVersion: kustomize.toolkit.fluxcd.io/v1

kind: Kustomization

metadata:

 name: flux-system

spec:

 sourceRef:

 kind: GitRepository

 name: flux-system

 path: ./clusters/cluster-001

apiVersion: kustomize.toolkit.fluxcd.io/v1

kind: Kustomization

metadata:

 name: flux-system

spec:

 sourceRef:

 kind: GitRepository

 name: flux-system

 path: ./clusters/cluster-002

Multi-cluster - single repository

What just happened?

cluster-001 cluster-002

main

Multi-cluster - multiple repositories - versioned

● Multi cluster
● Multi repository
● Risk mitigated through versioning (tagging)

cluster/main

infra/main

v0.0.0 v0.0.1 v0.0.2 v0.0.3

└── clusters
 ├── cluster-001 (v0.0.0)
 ├── cluster-002 (v0.0.0)
 └── cluster-003 (v0.0.0)

└── clusters
 ├── cluster-001 (v0.0.2)
 ├── cluster-002 (v0.0.0)
 └── cluster-003 (v0.0.1)

Mitigation: Version the cross cluster config

Problem solved?

● Roll-out is fully versioned
● Risk is mitigated

● Scaling is linear with number of clusters
● But each new cluster add maintenance

and thus complexity

● What else could we do?

Multi-cluster - multiple repositories - versioned

Sustainable scaling
● Need to roll-out to multiple clusters
● Need to be able to define groups
● “Traditional” approach dev, test, … - won’t work
● As a service provider most clusters are production

Multi-cluster scale up

Multi-cluster scale up

https://sphweb.bumc.bu.edu/otlt/mph-modules/sb/behavioralchangetheories/behavioralchangetheories4.html

● How is innovation absorbed?
● Rogers: Diffusion of Innovation Theory

Opportunity versus risk

Rogers: Diffusion of innovation

Innovators - These are people who want to be the first to try the innovation. They are venturesome and
interested in new ideas. These people are very willing to take risks, and are often the first to develop new
ideas.

Early Adopters - These are people who represent opinion leaders. They enjoy leadership roles, and
embrace change opportunities. They are already aware of the need to change and so are very
comfortable adopting new ideas.

Early Majority - These people are rarely leaders, but they do adopt new ideas before the average person.
That said, they typically need to see evidence that the innovation works before they are willing to adopt it.

Late Majority - These people are skeptical of change, and will only adopt an innovation after it has been
tried by the majority.

Laggards - These people are bound by tradition and very conservative. They are very skeptical of change
and are the hardest group to bring on board.

Archetype definitions

Multi-cluster categorization

Applying the theory: Resilience zones

cluster-001

innovators

cluster-002 cluster-003

early-adopters late-majority

● Using the Rogers categories
● When to receive updates?

E.g. development - quickly
testing out new features

E.g. production for
innovative applications

E.g. production for
critical applications

Multi-cluster - multiple repositories - multiple branches

early-adopters

early-majority

late-majority

laggards

innovators

cluster/main
└── clusters
 ├── cluster-001 (innovators)
 ├── cluster-002 (early-adopters)
 └── cluster-003 (late-majority)

Branching out: Implementing with gitops

Demo: Same roll-out as before…

Demo - multiple clusters - take 2

Takeaways

● Gitops is very powerful (also) at scale
● Don’t repeat yourself (DRY principle) but…
● Mitigate the risks when scaling up
● Consider what is right in your context
● Automate and be aware of the complexity

Alfred Nobels vej 25, DK-9220 Aalborg Ø * Tlf. 77 77 08 88 netic.dk company/netic-as

Thank you.
https://github.com/neticdk/k8s-workshop

https://github.com/neticdk/k8s-workshop

