

Principles for
Secure and

Reliable Systems

GOTO Aarhus 2023

Eleanor Saitta / Systems Structure Ltd.

Systems exist to do things in the world

To be useful, they need to have certain emergent
properties

Whole-system properties which occur in a specific
context

Require unified effort to deliver

What is a System?

• Correctness
• Performance
• Efficiency
• Reliability

• Observability
• Security
• Resilience

Properties you care about:

A secure system is one that:
• Enables a chosen set of people to predictably

accomplish specific goals
• Does so in the face of actions by a chosen set

of adversaries
• Predictably prevents that chosen set of

adversaries from

What is Security?

Alternately:
• Reliability and correctness of outcomes in the

presence of an adversary
• Close-loop defense of outcomes

What is Security?

The ability of a system to deal with unforeseen
modes of failure without complete failure

Resilience is a property of humans, not code

What is Resilience?

Designing both processes and technical systems
in accordance with specific principles leads to
desired emergent properties

Properties of technical artifacts vs. properties of
human processes

Designing for Resilient Security

A selection of interesting system design principles:
• Statelessness/Logiclessness
• Immutability and Ephemerality
• Canonical Stores
• Unlinkability
• Least Mechanism

Component Principles

Services should either do computation or hold
state, not both

Complex components are unpredictable

State and Logic

Data, configuration, and memory are all state

Immutable systems eliminate unnecessary state

Respinning a cluster resets state

Immutability and Ephemerality

Every piece of state should exist canonically in
exactly one place

As few systems as possible should be stores of
state

Any duplicated state must be validated

Minimal, Canonical State

Privacy and anonymity are ill-defined

X piece of data is unlinkable to Y piece of data
under these assumptions

Unlinkability

• Complexity adds potential vulnerabilities geometrically
• Use the simplest working mechanism for features
• Have as few features as needed for what you do

• You spend lines of code to buy features
• Every line of code is an ongoing cost
• Every tool and library is also an ongoing cost
• Velocity averages out; technical debt is drag
• Most security debt is dark

Code is Not an Asset

Presenter Notes
Presentation Notes
The best commits are deletes

And a few for the human side of the org:
• Declare and Generate
• Design for Failure
• Decide at the Edge
• Slack
• Incentivize What You Want

Process Principles

Declarative configurations are easier for both
humans and computers to create, compose, and
validate

Use automatic memory management, parser
generators, strongly typed languages, and state
machine generators

Declare, don’t Program

Mitigations Always Fail

Presenter Notes
Presentation Notes
Raising the bar until you can’t see the problem any morePut a WAF in front of an XSS-vulnerable site doesn’t fix the bug; WAF misses something and you get ownedUnparameterized, injectable SQL queries are still injectable even if the input validation blocks all the exploits you can come up withDon’t be this guy, actually fix the problems

Kill Bug Classes
Security engineering changes
that don’t involve killing bug
classes are emergency response
work

…unless those changes kill
traversal instead

Make a plan for each class and
layer in advance and crosscheck

Presenter Notes
Presentation Notes
For every layer where a potential vulnerability class could be introduced, decide on a framework-level fix that will consistently eliminate that class in that layerDocument this strategy and select your frameworks before you start development and then use them consistently; confirm their use as part of the code review process on every PRXSS, SQLi, GraphQLi, file handling, string parsing, state machines, authentication and state managementIf a library you need doesn’t consistently do the right thing, either fork or shim itAutomation to check if these are circumventedYou never need unmanaged memory or dynamic typing; both are associated with a significant increase in vulnerabilitiesIf you’re writing kernel level code, use Rust, not C

Failure and compromise are inevitable

Design components and systems to handle both
predictable and unpredictable types of failures

Think about security controls as a whole, assuming
that some layers will always fail

Build the system you’d like to have during a
compromise or outage

Design for Failure

Empower teams and engineers to work
autonomously, so decisions can happen where
people have full context

Focus on coordination and communication over
control

Ensure teams have thick horizontal relationships
outside of formal processes

Decentralize Decisionmaking

Resilience requires teams to have downtime

Improving any emergent property takes more
time than the bare minimum

Apply hard caps to feature velocity, ensure
people take vacations, have large on-call
rotations, and track out of hours work

Slack

People do not do work they’re told to do but
incentivized not to do
Look at what your management, bonus,
evaluation, and promotion structure encourages
Use Conway’s law intentionally; your team
structure is part of your technical architecture

Incentives

• You get to design your attacker’s motivation level
and the problems they have to solve

• Spend as much time designing unhappy paths as
happy ones

• Know where each automated business or security
decision in your flows

• Document this before each sprint and check it after

Product Security

You are responsible for the impact of your work
on people’s lives.

Presenter Notes
Presentation Notes
As security engineers, our work has an outsized impact on the ability of users to exercise their human rights, both in the context of the systems we build and in the world.Your company may decide that it’s willing to overlook certain harms in the name of profit, but that doesn’t eliminate your moral responsibility for that harm.Systems designed for the rule of law are about to be operated at scale outside of that context. You have a duty to not only mitigate known harms but anticipate probable ones.

• A domestic violence victim seeking an
abortion

• A queer teen

• A union organizer

Personas to Examine

Ditch all your Windows boxes — use Macs/Chromebooks
and ditch Office for Workspace
Yubikeys for everyone, everything tied to SSO
Get some Thinkst Canaries in prod/if you have an office
Backup everything and make sure it’s tested
Track where your data is and be careful where it goes
Treat code as an expense, not an asset
Include maintenance when costing new SaaS tools

Quick tips for starting from zero

ella@structures.systems
@dymaxion@infosec.exchange

Startup looking to get
serious about security?

Let’s talk.

Eleanor Saitta
Systems Structure Ltd.

	Slide Number 1
	Principles for Secure and Reliable Systems
	What is a System?
	Properties you care about:
	What is Security?
	What is Security?
	What is Resilience?
	Designing for Resilient Security
	Component Principles
	State and Logic
	Immutability and Ephemerality
	Minimal, Canonical State
	Unlinkability
	Code is Not an Asset
	Process Principles
	Declare, don’t Program
	Mitigations Always Fail
	Kill Bug Classes
	Design for Failure
	Decentralize Decisionmaking
	Slack
	Incentives
	Product Security
	Slide Number 24
	Personas to Examine
	Quick tips for starting from zero
	Slide Number 27
	Slide Number 28

