

Alina Yurenko

Developer Advocate for GraalVM

Oracle Labs

GOTO Aarhus Steffen Muldbjerg @ Unsplash

Java in the Cloud with GraalVM

What GraalVM offers

More performance in JIT mode
• Run your Java application faster

• New (JIT) compiler optimizations

Fast startup with Native Image
• Create standalone binaries with low footprint

• Instant performance

Polyglot VM
• Interop: extend your Java application with libraries from JavaScript, Python, R…

• high performance for all languages

• polyglot tooling

More performance with the Graal compiler
• Run your Java application faster

• New JIT compiler optimizations

Fast startup with Native Image
• Create standalone binaries with low footprint

• Instant performance

Polyglot VM
• Interop: extend your Java application with libraries from JavaScript, Python, R…

• High performance for all languages

• Polyglot tooling

 native-image MyMainClass
./mymainclass

JIT AOT
java MyMainClass

GraalVM 🤝 Java microservice frameworks

5

Java in the Cloud - Goals

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Java in the Cloud - Goals

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Native Image Build Process

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

9

JIT AOT

Load JAR files from disk Load executable from disk

Uncompress class files

Verify class definitions

Execute in interpreter (~20x slower)

Gather profiling feedback

Compile to machine code

Execute at peak performance

Execute at peak performance

Java in the Cloud - Goals

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

11

JIT AOT

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Virtual Machine
Runtime and

Compiler
Garbage Collector

Application payload

Garbage Collector

Compilation Data
Structures

Profiling Feedback

Application
Machine Code

Memory

12

JIT AOT

Application payload

Dynamic Code
Cache

Metaspace
Class Files

VM Runtime
and Compiler

Garbage
Collector

Profiling
Feedback

Memory Scalability

Application payload

Application
Machine Code

Garbage
Collector

Application payload
Application payload

Application payload
Application payload

Application payload

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

shared

duplicated
per process

Example: horizontal scaling of microservices

Java HotSpot VM

• 4 VM instances = 4 times the memory

Native Image

• 4 VM instances = 2 times the memory

• Image heap shared between processes

• Machine code shared between processes

Memory Usage in MB
Quarkus Apache Tika ODT in a “tiny” configuration and with the serial GC
(1 CPU core per process, -Xms32m -Xmx128m) – JDK 11

0

200

400

600

800

1000

1200

1 process 2 processes 3 processes 4 processes

1109.0562

842.6914

576.3267

309.9619

132.2417107.79383.344258.8955

Native Image EE HotSpot C2

Demo: startup and performance

14

Java in the Cloud - Goals

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Reduced Attack Surface

• No new unknown code can be loaded at run time

• Only paths proven reachable by the application are included in the image

• Reflection is disabled by default and needs an explicit include list

• Deserialization only enabled for specified list of classes

• Just-in-time compiler crashes, wrong compilations, or “JIT spraying” to create

machine code gadgets are impossible

Demo: reducing attack surface

Scalable Microservices with Helidon SE and Native Image

18

 Oracle Customer Experience Industry Framework

• Use GraalVM Native Image to
create minimum-size, precompiled
executable images of its
microservices: container images of
<50MB

• “It’s a killer feature for security”

medium.com/helidon/oracle-cx-industry-
framework-a-helidon-flight-with-aerobatic-
stunts-4666683d5176

https://medium.com/helidon/oracle-cx-industry-framework-a-helidon-flight-with-aerobatic-stunts-4666683d5176
https://medium.com/helidon/oracle-cx-industry-framework-a-helidon-flight-with-aerobatic-stunts-4666683d5176
https://medium.com/helidon/oracle-cx-industry-framework-a-helidon-flight-with-aerobatic-stunts-4666683d5176
https://medium.com/helidon/oracle-cx-industry-framework-a-helidon-flight-with-aerobatic-stunts-4666683d5176
https://medium.com/helidon/oracle-cx-industry-framework-a-helidon-flight-with-aerobatic-stunts-4666683d5176

Java in the Cloud - Goals

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Single Native Executable

• All relevant JVM runtime and JDK library code is included

• Unreachable paths (i.e., dead code) in the application and its dependencies eliminated

• Disadvantage that Java runtime installation cannot be shared, but also advantage that

applications can be patched/updated individually

Lightweight containerized applications

YouTube: A 1.5MB Java Container App? Yes you can! by Shaun Smith

What’s the catch?

• GraalVM 🤝 Reflection!

• Native Image tries to resolve the target elements through a static analysis that detects calls to
the Reflection API

• If the analysis can not automatically detect your use of reflection, you might need
additional configuration

• Trace reflection, JNI, resource usage on the JVM with the tracing agent

• Manual adjustment / addition might still be necessary

GraalVM & Reflection?

23

Required Build Time Step

• Computational effort necessary at build time

• Need a powerful machine with the same target architecture & OS

• Use GraalVM with GitHub Actions: github.com/marketplace/actions/github-action-for-graalvm

• Many larger apps can build with 2 GB of memory

• Develop in JIT mode for fast development, only use AOT for final deployment

• For best throughput, use profile-guided optimizations

https://github.com/marketplace/actions/github-action-for-graalvm

What’s new in
GraalVM

26

• -H:+AllowVMInspection -> --enable-monitoring
• --enable-monitoring=<all,heapdump,jfr,jvmstat>

• added support for jvmstat in Native Image

• keep building out the JFR support in Native Image (thanks to Red Hat for their contributions!)

New monitoring features in GraalVM Native Image 📈

27

GraalVM Community roadmap on GitHub

https://github.com/orgs/oracle/projects/6

https://github.com/orgs/oracle/projects/6

What’s next for GraalVM

What’s next for Native Image

• Simplifying configuration and compatibility for Java libraries

• Continuing with peak performance improvements

• Keep working with Java framework teams to leverage all

Native Image features, develop new ones, improve

performance, and ensure a great developer experience

• Further reduce build time and footprint of the Native Image

builder

• IDE support for Native Image configuration and agent-based

configuration

• Further improving GC performance and adding new GC

implementations

Get started with
GraalVM

Get started with GraalVM

bash <(curl -sL https://get.graalvm.org/jdk)\
graalvm-ce-java19-22.3.0

sdk install java 22.3.r19-grl

https://get.graalvm.org/jdk

Java in the Cloud - Goals

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Thank you!

Alina Yurenko

@alina_yurenko

https://twitter.com/alina_yurenko

36

