GOTO AARHUS 2023

#GOTOaar

Predicting
Optimal Supply
Temperature in
the Transmission
System

neuro

CTR

Readiness assessment

Knowledge

sharing

User-Story

As Centralkommunernes Transmissionsselskab
We want to predict the true supply temperature 12-36 hours in advance,
Such that we can ensure the best electrical efficiency as well as our
service obligation, at the lowest possible temperature

Why?

Opportunity to use the **best heating mixture**

Ensure a greener district heating, by reducing the return temperature

In the end, creating a cheaper district heating to end-users

What is
District Heating

What is District Heating?

1 unit fuel = 1/3 Electrical energy and 2/3 Thermal Energy

Overproduction - Wind Turbine

Waste Heat from Production Facilities

Waste Heat from Data Centres

Basically anything that produce waste heat

The Challenge District Heating

Heat can be **produced** from **different sources**

Heat can be distributed from different heat exchangers into the network

Centralkommunernes Transmissionsselskab

https://www.ctr.dk/vaerd-at-vide/om-ctr/

Centralkommunernes Transmissionsselskab

Varmelast.dk

Natural hydraulic limitations

neuro space

It is **not** an option, to produce insufficient heat

Some customers require a **certain** supply temperature

Danish weather can provide you with **sunshine** and **+15 degrees** today

...and **snow** and **-2 degrees** tomorrow

The Challenge Machine Learning

Predict Optimal Supply Temperature

Predict Optimal Supply Temperature

Predict Optimal Supply Temperature

We train a Machine Learning algorithm on Historical Data

What we are looking for, must be represented in our dataset

District Heating will rather deliver too high temperature, than risk having a too low temperature

What is **Optimal?**

The Solution

neuro space

2 years of data

Pressure

Supply Temperature

Flow

Temperature (outside)

••

•

The data quality was high

neuro space

Domain Experts in CTR, was able to provide crucial knowledge, for us to reduce the dataset significantly, and identify optimal supply temperature

Machine Learning Model #1 Predicting Optimal Supply Temperature

Timestamp

Timestamp

Experts from CTR were able to Validate weather the model's predictions were optimal or not

On average in a 14-day test-period, the model was able to optimize the supply temperature with 5.4 degrees

Machine Learning Model #2 Predicting hydraulic limitations

Timestamp

ML model 2

As Centralkommunernes Transmissionsselskab,

....

Such that we can ensure the best electrical efficiency as well as our service obligation, at the lowest possible temperature

Key Takeaways

neuro

Right data != Big data Representative data

Machine Learning Flywheel

Domain experts

neuro

Don't forget to vote for this session in the GOTO Guide app

