
1/35

Version control post-Git

Pierre-Étienne Meunier (Coturnix, Pijul)



2/35

Plan

Version control

Our solution

Implementation

Hosting platform: a new hope



3/35

What is version control?

I One or more coauthors edit a tree of documents concurrently

I Asynchronous edits: coauthors can choose when they want to “sync” or “merge”

I Edits may conflict

I Review a project’s history



4/35

A solved problem?

Our tools (Git, Hg, SVN, CVS…):

I Aren’t used by non-coders, despite their maturity (30

years+)

I Are almost unusable without a global central server

(GitHub)

I Require strong work discipline and planning

I Waste significant human worktime at a global scale

Improvements have been proposed (Darcs) but don’t really scale.

Note: in this talk we only consider open source version control systems



5/35

Our demands

We want:

I Associative merges:

Changes A and B together are the same as A, followed by B.

I Commutative merges:

If A and B can be produced independently, their order does not matter.

I Branches (or not: more on that later)

I Low algorithmic complexity, and ideally fast implementations



6/35

Associative merges, a.k.a “one-by-one review”

A

B C

ABC

A

B C

AB ABC

=



7/35

3-way merge (Git, Hg, SVN, CVS…) is not associative

A

B

G

A

B

A

B

G

A

B

A

B

X

A

X

B

G

A

B



8/35

Commutative merges

A

B

A B

B A

=



9/35

Commutative merges: why?

Git and SVN are never commutative, why would we want this?

I Unapplying old changes, even after others have been applied.

I Cherry-picking.

I Partial clones: pull the patches related to a subproject.



10/35

States vs changes

I Git, Hg, SVN, CVS… store states, and compute changes when needed (3-way merge).

I What if we did the opposite?

I What if we stored both?



11/35

A change-based idea: Operational Transforms

abc

xabc

ab

xab

T1 = ins(0, “x”)

T2 = del(2, “c”)

T2′ = del(3, “c”)

T1

I Darcs does this, and uses it to detect conflicts

I Quadratic explosion of cases

I A nightmare to implement



12/35

A hybrid (state/change) approach: CRDTs

I General principle: design a structure where all operations have the properties we want

I Natural examples: increment-only counters, insert-only sets…

I More subtle: tombstones, Lamport clocks…

I Useless: a full Git repository (not just HEAD)



13/35

Plan

Version control

Our solution

Implementation

Hosting platform: a new hope



14/35

Conflicts

I Where we need a good tool the most

I The exact definition depends on the tool

I Example: Alice and Bob write to the same file at the same place

I Example: Alice renames a file from f to g while Bob renames f to h

I Example: Alice renames a function f while Bob adds a call to f



15/35

Using category theory

For any two patches f and g, we want a unique state P such that:

For any state Q accessible by Alice and Bob after f and g, respectively

There is a patch from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists (implying uniqueness), we call P the pushout of f and g.

Started by Samuel Mimram and Cinzia Di Giusto



15/35

Using category theory

For any two patches f and g, we want a unique state P such that:

For any state Q accessible by Alice and Bob after f and g, respectively

There is a patch from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists (implying uniqueness), we call P the pushout of f and g.

Started by Samuel Mimram and Cinzia Di Giusto



15/35

Using category theory

For any two patches f and g, we want a unique state P such that:

For any state Q accessible by Alice and Bob after f and g, respectively

There is a patch from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists (implying uniqueness), we call P the pushout of f and g.

Started by Samuel Mimram and Cinzia Di Giusto



16/35

Problem: the pushout doesn’t always exist

I Equivalent to saying that conflicts happen.

I How to generalise the representation of states (X , Y , Z) so that all pairs of changes

(f and g) have a pushout?

X Y

Z P

g

f

Solution: States are directed graphs, where:

I Vertices are bytes (or byte intervals).

I Edges represent the union of all known orders between bytes.



17/35

Adding some bytes

I Vertices are labelled by a change number c0 and an interval (such as [0, n[) in that

change.

I Edges are labelled by the change that introduced them.

Here, c1 addsm bytes between positions i − 1 and i of c0:

c0 : [0, n[

c0 : [0, i[

c0 : [i, n[

c1 : [0,m[c0

c1

c1



18/35

Deleting bytes

Deleting bytes j to i from c0, and 0 to k from c1:

c0 : [0, n[

c0 : [0, i[

c0 : [i, n[

c1 : [0,m[c0

c1

c1

c0 : [0, j[

c0 : [j, i[

c0 : [i, n[

c1 : [0, k[

c1 : [k,m[

c2

c0

c2

c1

c1



19/35

That’s all we need!

Two kinds of changes:

I Add a vertex, in a context (parents and children)

I Change an edge’s label



20/35

Our definition of conflicts

I Alive vertices are vertices whose incoming edges are all alive.

I Dead vertices are vertices whose incoming edges are all dead.

I Other vertices are called zombies.

A graph has no conflict if and only if it has no zombie

and all its alive vertices are totally ordered.



21/35

Some remarks

I Changes are partially ordered by their dependencies on other changes.

I Cherry-picking is the same as applying a patch.

I No git rerere: conflicts are solved by changes, which can be cherry-picked.

I Partial clones/monorepos: easy as long as “wide” patches are disallowed.

I Large files: we only need the description of operations (insertions/deletions).



22/35

Plan

Version control

Our solution

Implementation

Hosting platform: a new hope



23/35

Working with large graphs on disk

I We can’t load the entire graph each time.

I Store edges in a key-value store.

I Transactions: passive crash-safety.

I Branches: efficiently forkable store.



24/35

Introducing Sanakirja, an on-disk transactional KV store

I File block allocator

I Crash-safety using referential transparency and copy-on-write.

I Forkable in O(log n), where n is the total size.

I Written in Rust (but with a tricky API).

I Generic underlying storage layer.



25/35

Crash safe using multiple B trees and roots

3 7

1 2 8 94 6

5
+

3

1 2 8 94 6

7

53 7

1 2 8 94

5
+

6



25/35

Crash safe using multiple B trees and roots

3 7

1 2 8 94 6

3

4 6

7

5
0

1

Current: 1

2

4k

4k

4k

I Updating the “current” (first 8 bytes of the file) commits the next version.

I Writers don’t block readers!



26/35

Sanakirja is the fastest we’ve tested

I Performance of retrieval (get) and insertion (put) into a B tree.

I Not specific to Pijul (but long values not yet implemented).

Get Put



26/35

Sanakirja is the fastest we’ve tested

I Performance of retrieval (get) and insertion (put) into a B tree.

I Not specific to Pijul (but long values not yet implemented).

Get Put



27/35

Plan

Version control

Our solution

Implementation

Hosting platform: a new hope



28/35

Building a hosting platform with a team of one

I First version released in 2016, Rust code + PostgreSQL running on a single machine

I OVH Strasbourg data center fire in March 2021.

I Now: replicated setup using Pijul-as-a-CRDT, and Raft to replicate Postgres

Main issue: high loads→ Postgres failures→ switchovers→ data loss



29/35

Using function-as-a-service

Traditional architecture Workers V8 isolates

↻ ↻ ↻

↻ ↻ ↻

↻ ↻ ↻

↻ ↻ ↻

↻ ↻ ↻

↻ ↻ ↻

User code

↻

Process overhead

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ } { } { }

{ }

{ }

Taken from the Cloudflare documentation



30/35

Using function-as-a-service

export default {

async fetch(request) {

return new Response('Hello worker!', { status: 200 });

},

};

Taken from the Cloudflare documentation



31/35

A robust solution with FaaS

I Can we run (or simulate) a Pijul repository in a pure function-as-a-service framework?

I Main challenge: high latency, eventually consistent storage.

I Compiling Sanakirja to WASM, storing pseudo-memory pages on the storage engine.

I Using the multiple heads to deal with eventual consistency.

I We don’t need a full Pijul:

Checking dependencies and maintaining a list of patches is enough



31/35

A robust solution with FaaS

I Can we run (or simulate) a Pijul repository in a pure function-as-a-service framework?

I Main challenge: high latency, eventually consistent storage.

I Compiling Sanakirja to WASM, storing pseudo-memory pages on the storage engine.

I Using the multiple heads to deal with eventual consistency.

I We don’t need a full Pijul:

Checking dependencies and maintaining a list of patches is enough



31/35

A robust solution with FaaS

I Can we run (or simulate) a Pijul repository in a pure function-as-a-service framework?

I Main challenge: high latency, eventually consistent storage.

I Compiling Sanakirja to WASM, storing pseudo-memory pages on the storage engine.

I Using the multiple heads to deal with eventual consistency.

I We don’t need a full Pijul:

Checking dependencies and maintaining a list of patches is enough



32/35

Technical details

I Typescript for web parts

I Svelte for the UI

I Rust/WASM for the Pijul parts

I Can be self-hosted using Cloudflare’s workerd
I Open source (AGPL), released progressively, starting today!

https://nest.pijul.org

https://nest.pijul.org


33/35

Conclusion

I Open Source version control based on proper algorithms.

I Scalable to monorepos and large files.

I Potentially usable by non-coders: parliaments, artists, lawyers, Sonic Pi composers,

LEGO builders…

I Hosting service available since today.

I Personal note: doing many things at the same time never works, until it does.

Acknowledgements: Florent Becker, Tankf33der, Rohan Hart, Chris Bailey, Angus Finch…



34/35

Thanks for your attention



35/35


	Version control
	Our solution
	Implementation
	Hosting platform: a new hope
	Conclusion

