


Bram Verburg - 23 May 2023

Concurrency Abstractions for 
Application Security
GOTO Aarhus 2023



Outline
• Flashback: memory management


• Concurrency


• Concurrency abstractions


• Security potential


• Implementations


• Challenges and future work



Manual memory management
• Explicitly allocate and deallocate memory


• Pointers to track memory allocations


• Pointer arithmetic to traverse data structures


• Carefully avoid memory leak, null pointer 
dereference, uninitialized pointer dereference, 
buffer overflow, buffer underflow, use after free, 
…



Automatic memory management
• Implicitly allocated when created/assigned


• Garbage collection (tracing, reference counting)


• Push the responsibility to language runtime


• Proven, tested, scrutinized unlike your 
application code



Concurrency
• Not just about scaling across cores, processors 

and servers


• Unit of concurrency: OS process, OS thread, 
green threads


• Inter-process communication: shared memory, 
external (message broker, Redis), message 
passing


• Process management, monitoring, fault 
tolerance and recovery



Automatic concurrency management
• Built into the language


• Message sending/receiving, pattern matching, 
functional paradigm, immutable data


• Supported by the runtime environment


• Green threads, scheduler, isolation, process 
monitoring, fault tolerance


• Some trade-offs may be necessary


• Stop application developers from worrying about 
concurrency



Security benefits
• Immutable data structures


• Isolated, independent processes


• Resilience though process supervision


• Compare security principles in “CIA triad”:


• Immutability & Isolation → Integrity 


• Isolation → Confidentiality


• Resilience → Availability



Integrity
• Actor model


• No shared mutable state


• State changes are explicit, transactional 
and serialized


• Without locks, semaphores, mutexes


• Helps prevent race conditions



Confidentiality
• Prevent accidental leakage


• Short-lived processes with a dedicated scope


• Example: handling HTTP requests from 
different users, concurrently or sequentially


• Segregation of application code


• Example: HTTP request handler isolated 
from TLS socket



Availability
• Minimize blast radius


• Reset to known-good state


• Self-healing by cascading ‘reset’ up the 
supervision tree



Clarity
• Linear code, explicit state machines


• Focus on happy path


• Fewer moving parts, e.g. when scaling 
out


• Complexity is a liability



Native versus add-on
• Concurrency abstractions as a library


• Using green threads provided by 
runtime


• Missing runtime support for process 
monitoring?


• Who prevents shared mutable state?


• Impedance mismatch at the boundary



Examples: Erlang
• Erlang (and Elixir / LFE / Gleam / …)


• Actor model


• Non-blocking I/O 


• OTP principles for application design: 
“Supervision trees” for self-healing


• Multi-node clusters, with location transparency


• Missing: strong process/node isolation, code 
signing, static typing



Examples: other
• Go


• Goroutines and Channels


• Java / Scala


• Akka


• OCaml


• Multicore OCaml, effects



Challenges and future work
• Work being done on static type systems for Erlang / Elixir


• Other languages are evolving:


• Green threads


• Actor model


• Supervision


• Awareness is growing





Thank you!




