
An Introduction to 
Functional Imperative 
Programming in Flix

MAGNUS MADSEN

GOTO Aarhus 2023



Outline
An introduction to the Flix programming language:

① Effect system

② Region-based memory

③ Iterators in action

④ Purity reflection

⑤ Ecosystem and tooling

2



The Flix Principle

• Functionally (i.e. with immutable data structures)
• Imperatively (i.e. with mutable data structures)
• Declaratively (i.e. as a collection of logic constraints)

In Flix the primary building block is a function. A function maps an input to an output.

Flix allows functions to be written in the most natural and/or efficient style …

… without revealing these implementation to the clients.

Today

3



Effect System①

4



Type and Effect System
Flix has a type and effect system based on Hindley-Milner.

◦ The system supports type classes, higher-kinded types, and complete type inference.

The effect system separates pure, impure, and effect polymorphic expressions.
◦ The effect system is the basis for purity reflection.

Tracking purity has several benefits:
◦ It enables programmers to know when equational reasoning holds.

◦ It enables the Flix inliner to make more aggressive, but sound, choices.

◦ It enables the Flix standard library to know when it is safe to parallelize code (more on this later).

5



Purity
We can express that a function is pure:

Here the implementation of add cannot have any side-effects.

We can also express that a higher-order function requires a pure function argument:

Here neither f nor count can have any side-effects.

^^^ empty effect

^^^ empty effect set ^^^ empty effect

6



Impurity
We can also express that a function is impure:

It is a type error to annotate an impure function as pure:

^^ printing is impure

7



Effect Polymorphism
We can express that the effect of a higher-order function depends on its argument:

The effect of map is the same as the effect of f. 

^^ effect variable ^^ effect variable

8



Catching Bugs
We can use the effect system to catch programming mistakes:

❌

9



① Summary: Effect System
The type and effect system enables us to write pure, impure, and effect polymorphic functions.

We can use the type and effect system to track and enforce purity:
◦ The Flix standard library enforces that the eq, hash, compare, and toString functions are pure.

◦ The Flix compiler uses purity information during variable and function inlining.

Reasoning about purity helps us reason and understand programs.

10



Region-based 
Memory②

11



Region-based Memory
We have seen that Flix tracks purity. 

◦ As soon as a function touches mutable memory it gets tainted with impurity.

◦ This is cumbersome because impurity then proliferates through the program. 

◦ But what if the use of mutation is in some sense “local”.

💡We associate all mutable data with a region:
◦ Reads and writes to data in a region are precisely tracked by the effect system.

◦ All effects related to a region vanish when the region goes out-of-scope.

12



Example: Sorting

💡 Using an array-based (in place) sort is much faster than any list-based sort.

1. Introduce a new region.
2. Allocate (mutable) data in the region.
3. Do imperative programming.
4. Return immutable data.

13



Example: Adding Two Numbers

14



Example: Swapping Elements

💡 The type and effect system tracks reads and writes to regions.

☞ The region is part of the array type.

15



Example: ToString

💡 Using StringBuilders in toString functions is intuitive and efficient.

16



② Summary: Region-based Memory
Local mutation enables us to write pure functions that use local mutable state. 

◦ We can implement functions in imperative style.

◦ We can use imperative style when it is more natural and/or more efficient. 

◦ The type and effect system continues to ensure separation of pure and impure code!

💡We can “pretend” to be functional programmers but use imperative style when we want!

We get the best of both worlds!

17



Iterators 

in 

Action
③

18



Iterators in Action
We illustrate the Flix type and effect system by showing how to express iterators.

An iterator is essentially a mutable data structure that represents a stream of elements.
◦ Iterators are useful because they allow efficient traversal through homogenous collections.

Iterators typically support both terminal (eager) and non-terminal (lazy) operations.
◦ Terminal operations include functions like count, fold, and sum.

◦ Non-terminal operations include functions like map and filter.

💡 the type and effect system clarifies when an effects happens.

19



The Iterator Data Type

Latent Effects: What happens when this iterator is evaluated?

Associated Region: What memory does this iterator use?

20



Iterator API

21



Using Iterators

22



Using Iterators with Latent Effects

23



The Collectable Type Class

Instances for: List, Set, Map, etc…

24



Using Collectable

25



Syntactic Sugar: Foreach-Yield
1. Regions are implicit.
2. Iterators are flatMap’ed. 
3. Uses Collectable to 

build a new collection.

26



A “Real-World” Example

Thanks to Paul Butcher:
https://github.com/paulbutcher/chess-flix/blob/master/src/Main.flix

27



③ Summary: Iterators in Action 
We can express iterators in Flix.

◦ Iterators support both terminal (eager) and non-terminal (lazy) operations.

◦ The Flix type and effect system precisely describes when effects happens.

We can use Collectable to describe collections that can be built from iterators.

A bit of syntactic sugar makes the medicine go down:
◦ We can hide the region capability, the creation of iterators, and the use of Collectable.

◦ Upshot: We get clean syntax, excellent performance, and code that is pure to the outside world.

28



Purity 
Reflection④

29



Purity Reflection
Program evaluation in Flix (and most programming languages) is eager and sequential. 

◦ But it would be useful if library authors could take advantage of lazy and/or parallel evaluation. 

◦ But when is it safe to evaluate a function lazily or in parallel? 

Many programming languages have streams:
◦ But the combination of streams and side-effects is a dangerous cocktail.

◦ We risk race conditons, deadlocks, lost and/or re-ordered side effects!

Can we do better?

💡What if we allow data structure operations (map, filter, etc.) to vary their behavior depending 
on the purity of their function arguments?

30



Selective Parallelism
We can write a function that uses selective parallelism:

31



Example I

💡 Evaluation is sequential (since the function passed to map is impure).
This ensures that the order of side-effects is preserved (i.e. we print 1, 2, 3).

32



Example II: Automatic Parallelization

💡 Evaluation is parallel (since the function passed to map is pure). 
Upshot: the Map is rebuilt using all cores of the machine.

33



Selective Laziness
We can also write a function that uses selective laziness:

If is pure then we use to apply it lazily over the list.

If is impure then we use to apply it eager over the list (materializing all effects).

34



A Fresh Take on Data Transformations

Principle: Data structure operations (such as map, filter, ...) 

• Use lazy and/or parallel evaluation when given pure function arguments.

• Use eager sequential evaluation when given impure function arguments. 

This ensures that side-effects are not lost and that the order of side-effects is preserved.

35



④ Summary: Purity Reflection
Purity reflection enables higher-order functions to inspect the purity of their function 
argument(s) and to vary their behavior based on this information.

We can exploit this information to parallelize certain operations on sets and maps.
◦ Examples are count,  map, or mapWithKeys. 

We can also use this information to implement new and novel data structures: 
◦ DelayList a list that is maximally lazy except when given impure functions.

◦ DelayMap a map that is lazy in its values and uses parallel evaluation for bulk operations.

36



Ecosystem & 
Tooling⑤

37



Visual Studio Code Support

✓ syntax highlighting

✓ inline diagnostics

✓ auto-complete

✓ type and effect hover

✓ find references

✓ jump to definition

✓ rename

✓ code hints

✓ code lenses (e.g. “click to run”)

✓ document symbols

✓ workspace symbols

✓ highlight related symbols

✓ incremental compilation

We support most Visual Studio Code features, including: 

38



39



40



41



42



43



44



45



Wrapping Up⑥

46



Additional Resources
The Official Flix Website: https://flix.dev/

The Programming Flix Book: https://doc.flix.dev/

API Documentation: https://api.flix.dev/

GitHub: https://github.com/flix/flix

InfoQ Article: https://tinyurl.com/infoq-flix

Happy Path Podcast: https://tinyurl.com/happypath-flix

47

https://flix.dev/
https://doc.flix.dev/
https://api.flix.dev/
https://github.com/flix/flix
https://tinyurl.com/infoq-flix
https://tinyurl.com/happypath-flix


The Flix Team

Magnus Ondřej Jaco

Jonathan Matt Andreas

… and all our open-
source contributors!

Jakob

48



… And thanks to our sponsors!

49



Summary (1/2)

• algebraic data types and pattern matching

• tuples and extensible records

• parametric polymorphism

• higher-kinded types and type classes

• a polymorphic effect system 

• purity reflection 

• region-based memory

channel and process-based concurrency

first-class Datalog program values 

Hindley-Milner style type inference

full tail call elimination

an extensive standard library

Visual Studio Code support

… and more

Flix is a new functional, imperative, and logic programming language.

Flix aims to offer a unique combination of features that no other existing language offers.

50



Summary (2/2)

Flix is ready for use! Try it out!
◦ Flix has a fully-featured Visual Studio Code extension.

◦ Flix has a website, online documentation, and a playground.

◦ The Flix Standard Library is extensive.

Flix is open source, freely available, and ready for use:

https://flix.dev/

Thank You!

Flix is a new functional, imperative, and logic programming language.

51

https://flix.dev/

	Slide 1: An Introduction to  Functional Imperative Programming in Flix 
	Slide 2: Outline
	Slide 3: The Flix Principle
	Slide 4
	Slide 5: Type and Effect System
	Slide 6: Purity
	Slide 7: Impurity
	Slide 8: Effect Polymorphism
	Slide 9: Catching Bugs
	Slide 10: ① Summary: Effect System
	Slide 11
	Slide 12: Region-based Memory
	Slide 13: Example: Sorting
	Slide 14: Example: Adding Two Numbers
	Slide 15: Example: Swapping Elements
	Slide 16: Example: ToString
	Slide 17: ② Summary: Region-based Memory
	Slide 18
	Slide 19: Iterators in Action
	Slide 20: The Iterator Data Type
	Slide 21: Iterator API
	Slide 22: Using Iterators
	Slide 23: Using Iterators with Latent Effects
	Slide 24: The Collectable Type Class
	Slide 25: Using Collectable
	Slide 26: Syntactic Sugar: Foreach-Yield
	Slide 27: A “Real-World” Example
	Slide 28: ③ Summary: Iterators in Action 
	Slide 29
	Slide 30: Purity Reflection
	Slide 31: Selective Parallelism
	Slide 32: Example I
	Slide 33: Example II: Automatic Parallelization
	Slide 34: Selective Laziness
	Slide 35: A Fresh Take on Data Transformations
	Slide 36: ④ Summary: Purity Reflection
	Slide 37
	Slide 38: Visual Studio Code Support
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Additional Resources
	Slide 48: The Flix Team
	Slide 49: … And thanks to our sponsors!
	Slide 50: Summary (1/2)
	Slide 51: Summary (2/2)

