An Introduction to
Functional Imperative
Programming in Flix

GOTO Aarhus 2023

MAGNUS MADSEN

Outline

An introduction to the Flix programming language:
@ Effect system

@ Region-based memory

@ Iterators in action

@ Purity reflection

@ Ecosystem and tooling

The Flix Principle

In Flix the primary building block is a function. A function maps an input to an output.

Flix allows functions to be written in the most natural and/or efficient style ...

* Functionally
* Imperatively
* Declaratively

A

Today

... without revealing these implementation to the clients.

@ Effect System

Type and Effect System

Flix has a type and effect system based on Hindley-Milner.
The system supports type classes, higher-kinded types, and complete type inference.

The effect system separates pure, impure, and effect polymorphic expressions.
The effect system is the basis for purity reflection.

Tracking purity has several benefits:
It enables programmers to know when equational reasoning holds.

It enables the Flix inliner to make more aggressive, but sound, choices.
It enables the Flix standard library to know when it is safe to parallelize code (more on this later).

Purity

We can express that a function is pure:

add(x: Int32, y: Int32): Int32 \ { } =
AN empty effect

Here the implementation of add cannot have any side-effects.

We can also express that a higher-order function requires a pure function argument:

count(f: a Bool \ { }, 1: List[a]): Int32 \ { } =
AN empty effect set AN empty effect

Here neither ¥ nor count can have any side-effects.

Impurity

We can also express that a function is impure:

Itis a

sayHello(name: String): Unit \ { 10 } =

println("Hello ${name}!") AA printing is impure

to annotate an impure function as pure:

illegal() : uUnit \ { } =
println(“I am impure!")

— Type Error
>> Impure function declared as pure.
1 | def illegal() : unit \ { } =

impure function.

Effect Polymorphism

We can express that the effect of a higher-order function depends on its argument:

map(f: a b \ ef, 1: List[al): List[b] \ ef =
AN effect variable AN effect variable

The effect of map is the same as the effect of f.

Pure use of map

List.map(x X % X + 42, 1)

Impure use of map
List.map(x println(x), 1)

Catching Bugs

We can use the effect system to catch programming mistakes:

main(): Unit \ { I0 } =
checkPermission()
println("Access Granted")

X -- Redundancy Error ---

>> Useless expression: It has no side-effect(s) and its result is discarded.

4 | checkPermission();

NNNNANNNNNANANANNNNANN

useless expression.

The expression has type 'Bool'

(1) Summary: Effect System

The type and effect system enables us to write pure, impure, and effect polymorphic functions.

We can use the type and effect system to track and enforce purity:
The Flix standard library enforces that the eq, hash, compare, and toString functions are pure.

The Flix compiler uses purity information during variable and function inlining.

Reasoning about purity helps us reason and understand programs.

10

@ Region-based
Memory

Region-based Memory

We have seen that Flix tracks purity.
As soon as a function touches mutable memory it gets tainted with impurity.

This is cumbersome because impurity then proliferates through the program.
But what if the use of mutation is in some sense “local”.

@ We associate all mutable data with a region:

Reads and writes to data in a region are precisely tracked by the effect system.

All effects related to a region vanish when the region goes out-of-scope.

12

Example: Sorting

///

/// Sort the given 1list "1 so that elements are ordered from low to
/// high according to their “Order instance.

/17

sort(l: List[a]): List[a] Order[a] =
rc {
arr = List.toArray(l, rc)
Array.sort!(arr)
Array.tolList(arr)

Introduce a new region.

Do imperative programming.
Return immutable data.

o 0 =

Using an array-based (in place) sort is much faster than any list-based sort.

Allocate (mutable) data in the region.

13

Example: Adding Two Numbers

Returns the sum of x and v

sum(x: Int32, y: Int32): Int32 \ { } =
rc {
a = Array#{x, vy} @ rc
Array.swap!(@, 1, a)
al1] + alo]
}

14

Example: Swapping Elements

Swap the elements at 1 and j 1n the array

swap!(i: Int32, j: Int32, a: Array[t, r]): Unit \ { r } =
ali] " region " region effect

alj]
y
X

= The region is part of the array type.

The type and effect system tracks reads and writes to regions.

15

Example: ToString

///

/// Returns a String representation of the given list "1 .

///

/// The returned String is of the form x1 :: x2 :: .. :: Nil.
///
| toString(l: List[a]): String h ToString[a] =

sb = i StringBuilder(r)

List.foreach(x -> StringBuilder.appendString!("${x]
StringBuilder.appendString!("Nil", sb)
StringBuilder.toString(sb)

}

Using StringBuilders in toString functions is intuitive and efficient.

", sb), 1),

16

(2) Summary: Region-based Memory

Local mutation enables us to write pure functions that use local mutable state.
We can implement functions in imperative style.

We can use imperative style when it is more natural and/or more efficient.
The type and effect system continues to ensure separation of pure and impure code!

@ We can “pretend” to be functional programmers but use imperative style when we want!

We get the best of both worlds!

17

Ilterators

(3) in

Action

[terators in Action

We illustrate the Flix type and effect system by showing how to express iterators.

An iterator is essentially a mutable data structure that represents a stream of elements.
Iterators are useful because they allow efficient traversal through homogenous collections.

Iterators typically support both terminal (eager) and non-terminal (/lazy) operations.
Terminal operations include functions like count, fold, and sum.
Non-terminal operations include functions like map and filter.

@ the type and effect system clarifies when an effects happens.

19

The Iterator Data Type

/// An iterator has three type parameters:

///
/// a - the type of its elements.

/// ef — the latent effect of the iterator.
/// r — the region associated with the iterator.

///
enum Iterator[a: Type, ef: Eff, r: Region] { ... }

/

Latent Effects: What happens when this iterator is evaluated?

Associated Region: What memory does this iterator use?

20

[terator API

///

/// terminal (eager) iterator operations:
///
def

sum(i: Iterator[Int32, ef, r]): Int32 \ { ef, r }
def toList(i: Iterator[a, ef, r]): List[a]l \ { ef, r }

def forEach(f: a -> Unit \ ef2, i: Iterator[a, efl, r]): Unit \ { efl1l, ef2, r }

/// non-terminal (lazy) iterator operations:
filter(f: a -> Bool \ ef2, i: Iterator[a, efl, r]): Iteratorl[a, {efl, ef2}, r]

def map(f: a -> b \ ef2, i: Iterator[a, efl, r]): Iterator[b, {efl, ef2}, r]

21

Using Iterators

main(): List[Int32] =
s = Set#{1, 2, 3}
rc {
Set.iterator(rc, s)
Iterator.map(x { x+11})
Iterator.tolList

}

/// Returns 2 :: 3 :: 4 :: Nil

// Lazy
// Eager

22

Using Iterators with Latent Effects

main(): List[Int32] \ IO =
s = Set#{1, 2, 3}
rc {
Set.iterator(rc, s)
Iterator.map(x { println("Hi!"); x + 1})
Iterator.tolList

}

// Prints "Hi!", "Hi!'", "Hi!" and then returns 2 :: 3 :: Nil

23

The Collectable Type Class

///

/// A class for collections that can be produced from an "Iterator .

o

5s Collectable[m: Type -> Typel] {

///

/// Collect the elements of “iter into "m[a] .

///

def collect(iter: Iterator[a, ef, r]): mlal \ {ef, r} with Order[a]

Instances for: List, Set, Map, etc...

P

Using Collectable

def desserts(): Set[(String, String)] =
let fruits = List#{"Apple", "Pear", "Mango"};
let creams List#{"Vanilla", "Stracciatella"};
region rc {
let iterl = List.iterator(rc, fruits);
let iter3 = Iterator.flatMap(fruit -> {
let iter2 = List.iterator(rc, creams);
Iterator.map(cream -> (fruit, cream), iter2)}, iteril);
Collectable.collect(iter3)

}

/// Set#t{(Apple, Stracciatella), (Apple, Vanilla),
/// (Mango, Stracciatella), (Mango, Vanilla),
/// (Pear, Stracciatella), (Pear, Vanilla)}

25

Syntactic Sugar: Foreach-Yield

desserts(): Set[(String, String)] =

fruits = List#{"Apple", "Pear", "Mango"}
creams = List#{"Vanilla", "Stracciatella"}

(fruit fruits
(fruit, cream)

cream

creams)

1. Regions are implicit.

2. lterators are flatMap’ed.

3. Uses Collectable to
build a new collection.

26

A “Real-World” Example

solve(rows: Int32, cols: Int32, pieces: List[Piece]): Set[Solution] =
pieces {
Nil Set#{Set#{}}
plece :: rest
(
solution solve(rows, cols, rest)
X Set.range(0, rows)
y Set.range(0, cols)
pos Some((x, y))
allowed(piece, pos, solution)
) Set.insert((piece, pos), solution)

}

Thanks to Paul Butcher:
https://github.com/paulbutcher/chess-flix/blob/master/src/Main.flix

27

(3) Summary: Iterators in Action

We can express iterators in Flix.
Iterators support both terminal (eager) and non-terminal (/azy) operations.

The Flix type and effect system precisely describes when effects happens.

We can use Collectable to describe collections that can be built from iterators.

A bit of syntactic sugar makes the medicine go down:
We can hide the region capability, the creation of iterators, and the use of Collectable.

Upshot: We get clean syntax, excellent performance, and code that is pure to the outside world.

28

@ Purity
Reflection

Purity Reflection

Program evaluation in Flix (and most programming languages) is eager and sequential.
But it would be useful if library authors could take advantage of lazy and/or parallel evaluation.

But when is it safe to evaluate a function lazily or in parallel?

Many programming languages have streams:
But the combination of streams and side-effects is a dangerous cocktail.

We risk race conditons, deadlocks, lost and/or re-ordered side effects!

Can we do better?

@ What if we allow data structure operations (map, filter, etc.) to vary their behavior depending
on the purity of their function arguments?

30

Selective Parallelism

We can write a map function that uses selective parallelism:

map(f: a b \ ef, t: Maplk, al): Maplk, b] \ ef =
f {
g: (k, a) b\ {} parMap(g, t)
g: (k, a) b\ ef segMap(g, t)

31

Example I

main(): Map[Int32, Int32] \ IO =
keys = List.range(1, 1 _000)
values = List.range(1l, 1 000)
m = List.toMap(List.zip(keys, values))

Map.map(v {println(v); v + 1}, m)

// Prints 1, 2, 3, ... and returns a Map#{l1 -> 2, 2 -> 3,

Evaluation is sequential (since the function passed to map is impure).
This ensures that the order of side-effects is preserved (i.e. we print 1, 2, 3).

32

Example II: Automatic Parallelization

main(): Map[Int32, Int32] =
keys = List.range(1, 1 _000)
values = List.range(1l, 1 000)
m = List.toMap(List.zip(keys, values))

Map.map(v {v + 1}, m)

Returns a Map#i1 -> 2, 2 ->

Evaluation is parallel (since the function passed to map is pure).
Upshot: the Map is rebuilt using all cores of the machine.

33

Selective Laziness

We can also write a map function that uses selective laziness:

map(f: a b \ ef, 1: DelayList[a]): DelayList[b] \ ef =
f {
g: a b\ {} mapL(g, 1)
g: a b \ ef mapE(g, 1)

}

If £ is pure then we use mapL to apply it lazily over the list.
If £ isimpure then we use mapE to apply it eager over the list (materializing all effects).

34

A Fresh Take on Data Transformations

Principle: Data structure operations (such as map, filter, ...)

e Use and/or when given function arguments.
e Use evaluation when given function arguments.

This ensures that side-effects are not lost and that the order of side-effects is preserved.

35

(4) Summary: Purity Reflection

Purity reflection enables higher-order functions to inspect the purity of their function
argument(s) and to vary their behavior based on this information.

We can exploit this information to parallelize certain operations on sets and maps.
Examples are count, map, or mapWithKeys.

We can also use this information to implement new and novel data structures:
DelaylList alist that is maximally lazy except when given impure functions.
DelayMap a map that is lazy in its values and uses parallel evaluation for bulk operations.

36

@ Ecosystem &
Tooling

Visual Studio Code Support

We support most Visual Studio Code features, including:

syntax highlighting
inline diagnostics
auto-complete

type and effect hover
find references

jump to definition

rename

code hints

code lenses (e.g. “click to run”)
document symbols

workspace symbols

highlight related symbols

incremental compilation

38

) Fle Edit Selection

@ EXPLORER

~ FLIX

}j > lib

 SIC

= Main.flix
> target

> test

¥ HISTORY.md
fl LICENSE.md
() README.md

B % %

{:‘3} > OUTLINE
> TIMELINE

@o0ho

View Go Run Terminal Help Main.flix - flix - Visual Studio Code
= Mainflix X

sic » = Mainflix > ..
/// An example using Datalog constraints enriched with lattice semantics to
/// compute the delivery date of a part based on delivery dates of its components.
Run | Run with args... | Run (in new terminal) | Run with args... (in new terminal)
def main(): Unit & Impure =

let p = #H
/// Parts and the components they depend on.
PartDepends("Car", "Chassis").
PartDepends("Car", "Engine").
PartDepends("Engine", "Piston").

PartDepends("Engine", "Ignition").

/// The time required to assemble a part from its components.
AssemblyTime("Car™, 7).
AssemblyTime("Engine”, 2).

/// The expected delivery date for certain components.
DeliveryDate("Chassis"; 2).
DeliveryDate("Piston"; 1).
DeliveryDate("Ignition"; 7).

/// A part is ready when it is delivered.
ReadyDate(part; date) :-
DeliveryDate(part; date).

/// Or when it can be assembled from its components.
ReadyDate(part; assemblyTime + componentDate) :-
PartDepends(part, component),
AssemblyTime(part, assemblyTime),
ReadyDate(component; componentDate).

};

// Computes a map from parts to delivery dates.
let m = query p select (c, d) from ReadyDate(c; d) [> Array.toMap;

// Looks up the delivery date for the car and prints it.
Map.getWithDefault("Car", @, m) [> println
36 |

PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMIMAL
LSP listening on: 'localhost/127.@.0.1:8888'.

Flix ©.28.@ Ready! (Extension: ©.74.0) (Using c:\Users\iostream\AppData\Roaming\Code\User\globalStorage\flix.flix\flix.jar)

Flix Compiler v =679 ~ X

@ Flix 0.28.0 Ready! (Extension: 0.74.0) (Using c\Users\iostream\AppData...

Ln 36, Col 1

39
Spaces:4 UTF-8 CRLF Flix & (2

@ The Flix Programming Language X +

&« & fliedev
B iostreamdk € flix @) flix

Home GetStarted Principles Documentation Research FAQ Blog Contribute Internships

The Flix Program mlng La nguage m ‘Algebraic Data Types and Pattern Matching V‘

Next-generation reliable, safe, concise, and /17 fn slgebraic data type for shapes.

A . . enum Shape {
functional-first programming language. case Circle(Int32), /f circle radius
case Square(Int32), /f side length
case Rectangle(Int32, Int32) // height and width

Flix is a principled functional, imperative, and logic programming T
language developed at Atarhus University, at t.he University of /17 Computes the area of the given shape using
Waterloo, and by a community of open source contributors. /// pattern matching and basic arithmetic.
def area(s: Shape): Int32 = match s {

L . X X case Shape.Circle(r) => 3= (r=r)
Flix is inspired by OCaml and Haskell with ideas from Rust and Scala. case Shape.Square{w) =W tw

. 5h -Rect. 1e(h, => h *
Flix looks like Scala, but its type system is based on Hindley-Milner. ~ , %% 2'@ee-ieerens et) “
Two unique features of Flix are its polymorphic effect system and its 1) Computes the ares of 5 2 by 4.

support for first-class Datalog constraints. def main(): Unit \ I0 =
println{area{Shaps.Rectangle(2, £)))

Flix compiles to VM bytecode, runs on the Java Virtual Machine, and
supports full tail call elimination. A VSCode plugin for Flix is available.

Why Flix?

Flix aims to offer a unique combination of features that no other programming language offers, including: algebraic data types and pattern
matching (like Haskell, OCaml), extensible records (like EIm), type classes (like Haskell, Rust), higher-kinded types (like Haskell), typematch (like
Scala), type inference (like Haskell, OCaml), structured channel and process-based concurrency (like Go), a polymorphic effect system (a unique
feature), region-based local mutation (a unique feature), purity reflection (a unique feature), first-class Datalog constraints (a unique feature),
and compilation to JVM bytecode (like Scala).

Algebraic Data Types and Pattern Matching enun shape ¢

case Circle(Int32),
Algebraic data types and pattern matching are the bread-and- o :222:;:?%5132 SR
butter of functional programming and are supported by Flix with T

minimal fuss. def areals: Shape): Int32 = match s |
case Circle(r) =3 *(r*r)
case Sguare(w) => W *FW
case Rectangle(h, w) => h * w

def origin(): (Int32, Int32) = (B, @) Tuples and Records

@ Flix| Principles x +
&« C @& flixdev/principles/
B iostreamdi) flix lix

Home GetStarted Principles Documentation Research FAQ Blog Contribute Internships

Design Principles

We believe that the development of a programming language should follow a set of principles. That is, when a design decision is made there
should exist some rationale for why that decision was made. By outlining these principles, as we develop Flix, we hope to keep ourselves honest
and to communicate the kind of language Flix aspires to be.

Many of these ideas and principles come from languages that have inspired Flix, including Ada, Elm, F#, Go, Haskell, 0Caml, Rust, and Scala.

Update: The Flix Principles has been published in a paper at Onward! '22. Read it here: The Principles of the Flix Programming Language.

Language Principles

Simple is not easy

We believe in Rich Hickey's creed: simple
is not easy. We prefer a language that
gets things right to one that makes
things easy. Such a language might take
longer to learn in the short run, butits
simplicity pays off in the long run.

Everything is an expression

Flix is a functional language and
embraces the idea that everything
should be an expression. Flix has no
local variable declarations or if-then-else
statements, instead it has let-bindings
and if-then-else expressions. However,
Flix does not take this idea as far as the
Scheme languages. Flix still has
declarations, namespaces, and so forth
that are not expressions.

Separate pure and impure code

Flix supports functional, imperative, and
logic programming. The type and effect
system of Flix cleanly and safely

Human-readable errors

In the spirit of Elm and Rust, Flix aims to
have human readable and
understandable compiler messages.
Messages should describe the problem
in detail and provide information about
the context, including suggestions for
how to correct the problem.

Private by default

Flix embraces the principle of least
privilege. In Flix, declarations are hidden
by default (i.e. private) and cannot be
accessed from outside of their
namespace (or sub-namespaces). We
believe it is impaortant that programmers
are forced to make a conscious choice
about when to make a declaration
publicly visible.

Closed world assumption

Flix requires all code to be available at
compile-time. This enables a range of
compilation techniques, such as:

No null value

Flix does not have the null value. The
null value is now widely considered a
mistake and languages such as C#, Dart,
Kotlin and Scala are scrambling to adopt
mechanisms to ensure non-nuliness. In
Flix, we adopt the standard solution
from functional languages which is to
represent the absence of a value using
the option type. This solution is simple to
understand, works well, and guarantees
the absence of dreaded

MullPointerExceptions.

No implicit coercions

In Flix, a value of one type is never
implicitly coerced or converted into a
value of another type. For example,
* No value is ever coerced to a
boolean.
e Novalue is ever coerced to a
string.
¢ Integers and floating-point are
never truncated or promoted.

@ Flix Playground

& > C @ playflixdev
B iostreamdk € flix lix

Compile & Run p

Website

O X

G e % EE»O0Q :

Documentation Standard Library Shareable Link I

/f/ An algebraic data type for shapes.
- enum Shape {
case Circle(Int32), [/ circle radius
case Sguare(Int32), /i side length
case Rectangle(Int32, Int32) // height and width

/// Computes the area of the given shape using
/// pattern matching and basic arithmetic.
- def area(s: Shape): Int32 = match s {
case Shape.Circle(r) =3 *(r*r)
case Shape.Square(w) =W *w
case Shape.Rectangle(h, w) =»> h * w

// Computes the area of a 2 by 4.
def main(): Unit \ I0 =
println{area(Shape.Circle(2)))

Standard Output

gf Introduction to Flix - Programm
&« C & docflindev
B iostreamdk € flix flix

1. Introd 0 Flix
2. Getting Started
2.1. Hello World!
2.2, Next Steps
3. Data Types
3.1. Primitives
3.2. Tuples
3.3. Enums
3.4. Type Aliases
4. Functions
5. Immutable Data
5.1. Lists
5.2. Chains and Vectors
5.3. Sets and Maps
5.4. Records
6. Mutable Data
6.1. Regions
6.2. References
6.3. Arrays
6.4. Collections
7. Control Structures
7.1. If-Then-Else
7.2. Pattern Matching
7.3. Foreach
7.4. Foreach-Yield

7.5. Monadic For-Yield

7.6. Applicative For-Yield

8. Structured Concurrency
9. Parallelism
10. Effect System

11. Modules

11.1. Dedaring Modules

11.2. Using Modules

11.3. Companion Modules

12. Type Classes

x

+

Programming Flix

Introduction to Flix

Flix is a principled functional, logic, and imperative programming language developed at Aarhus
University and by a community of open source contributors in collaboration with researchers from
the University of Waterloo, from the University of Tubingen, and from the University of Copenhagen.

Flix is inspired by OCaml and Haskell with ideas from Rust and Scala. Flix looks like Scala, but its type
system is based on Hindley-Milner which supports complete type inference. Flix aims to offer a
unique combination of features that no other programming language offers, including:

¢ algebraic data types and pattern matching.
¢ type classes with higher-kinded types.
e structured concurrency based on channels and light-weight processes.

In addtion, Flix has several new powerful and unique features:

e A polymorphic type and effect system with region-based local mutation.
¢ Datalog constraints as first-class program values.
« Function overloading based on purity reflection.

Flix compiles to efficient JVM bytecode, runs on the Java Virtual Machine, and supports full tail call
elimination. Flix has interoperability with Java and can use JVM classes and methods. Hence the
entire Java ecosystem is available from within Flix.

Flix aims to have world-class Visual Studio Code support. The Flix Visual Studio Code extension uses
the real Flix compiler hence there is always a 1:1 correspondence between the Flix language and
what is reported in the editor. The advantages are many: (a) diagnostics are always exact, (b) code
navigation "just works", and (c) refactorings are always correct.

Look'n Feel

Here are a few programs to illustrate the look and feel of Flix:

This program illustrates the use of algebraic data types and pattern matching:

/// An algebraic data type for shapes.

enum Shape {
case Circle(Int32), // circle radius
case Square(Int32), // side length
case Rectangle(Int32, Int32) // height and width

H

/// Computes the area of the given shape using

E Prelude
&« C @& apiflixdev

B iostreamdk € flix @) flix

-
flix o:00
|F\'Iter
> Prelude
> Applicative
» Array
> Assert
» Benchmark

> BigDecimal
7 Biglint

» Bool

> Boxable

» Chain

» Channel

> Char

» Choice

» Comparison
» Console

» Delaylist

> DelayMap
» Environment
> File

> Fixpoint

» Fixpoint.Ast
> Float32

> Floaté4

» Foldable

» Functor

» GetOpt

> Graph

> Hash

7 Int16

> Int32

> Inted

> Int8

> lterator

» List

> Map

> Monad

» Monoid

> MultiMap
» MutDeque
> MutList

» MutMap

» MutSet

> Nec

> Nel

> Object

Prelude

Classes

class Add[a : Type] Source

Atype class for addition.

Signatures (hide)

def add(x: a, y: a): a with Add[a] Source

Instances (show)

class Applicative[m : Type — Type] with Functor[m] Source

Atype class for functors that support application, i.e. allow to:

» Make an applicative value out of a normal value (embed it into a default context), e.g. embed 5 into Some(5).
= Apply a function-type applicative to a matching argumeant-type applicative, resulting in an applicative of the function's result type.

The meaning of the application realized by the ap function is defined by the respective instance. Conceptually this can be understood as applying functions "contained” in the first applicative to arguments in the second applicative, where the possible quantity of
functions/arguments depends on the type m. For example, an Opticnfa — o] can be Mone, or contain a function of type a — b, and only in the latter case a function is applied. A List[a — o] is an applicative that contains a list of functions, which are all to be applied to
all arguments contained in the arguments list.

A minimal implementation must define point and at least one of ao and man2 (if map2 is implemented, 2p can be defined based on man2 as shown below). If both ap and map2 are defined, they must be equivalent to their default definitions: an(f: nla = b 5 2], «:
) X:

mlal): mlb] \ ef = map2({identity, f, x)map2(f: a - b = c & e, mlal, y: mlbl): mlc] % ef = ap{Functor.map(f, =}, y)

Signatures (hide)
def ap[a, ef, b](Ff: m[a — b \ ef], x: m[al): m[b] \ ef with Applicative[m] Source
def point[al(x: a): m[a] with Applicative[m] Source
Definitions (show)

Instances (show)

class Closeable[a : Type] Source

Atype class for types that can be closed.

Signatures (hide)

def close(x: a): Unit \ 10 with Closeable[a] Source

Instances (show)

o flix/flix: The Flix Programming Lz X +
&« C @& github.com/flix/flix
B iostreamdk € flix @) flix

(’ Search or jump to.. Pull requests Issues Codespaces Marketplace Explore

& flix / flix * Public <2 Edit Pins ~ @ Unwatch 22 ~ % Fork 123 Starred 1.7k

<> Code (%) Issues 368 i1 Pull requests 16) Discussions (®) Actions [Projects (D Security |~ Insights I8 Settings

¥ master ~ P 7branches (53 tags Go to file Add file ~ <> Code ~ About

The Flix Programming Language
sockmaster27 chore: remove rel and 1at (#5931) b656265 54 minutes ago ® 8.272 commits

& flixdev/

.github/workflows ci: update community build (#5849) 2 weeks ago |
= anguage programming-language

docs feat: release 0.36.0 (#5761) 2 weeks ago functional jvm logic flix

R o § hacktoberfest imperative
examples chore: remove rel and lat (#5931) 54 minutes ago

gradle/wrapper chore: update gradle: 7.6 — 8.1 (#5756) 3 weeks ago Readme

View license
lib chore: Switch from jar files in lib to Gradle dependencies (#5211) 4 months ago
1.7k stars

main chore: remove rel and lat (#5931) 54 minutes ago .
= 22 watching
.editorconfig Add .editorconfig (#2676) 2 years ago 123 forks

R (T\ T r
.gitattributes chore: add .gitattributes (#2723) 2 years ago Report repository

.gitignore chore: add crash_report_*.txt to .gitignore (#3655) last year

Releases 52
AUTHORS.md feat: add String.stripMarginWith (#5895) 4 days ago

> Version 0.36.0 'CLatest:l

LICENSE.md Added license. 8 years ago N
2 weeks ago

: a ng height (#3225) ast y
README.md chore: update png height (#3225) last year + 51 releases

build.gradle fix: disable SLF4J warning (#5912) 5 days ago

gradlew chore: update gradle: 7.6 — 8.1 (# 3 weeks ago Packages

(e R o R o D e B e R o B P R o B

gradlew.bat chore: update gradle: 7.6 — 8.1 (#5756) 3 weeks ago No packages published

Publish your first package
README.md 4

Contributors 60

S
A i Lk

@ Wrapping Up

Additional Resources

The Official Flix Website:
The Programming Flix Book:

APl Documentation:

GitHub:

InfoQ Article:

Happy Path Podcast:

47

https://flix.dev/
https://doc.flix.dev/
https://api.flix.dev/
https://github.com/flix/flix
https://tinyurl.com/infoq-flix
https://tinyurl.com/happypath-flix

The Flix Team

Jonathan

Jaco

Andreas

... and all our open-
source contributors!

48

... And thanks to our sponsors!

Summary (1/2)

Flix is a new) , and programming language.

Flix aims to offer a unique combination of features that no other existing language offers.

algebraic data types and pattern matching channel and process-based concurrency
tuples and extensible records first-class Datalog program values
parametric polymorphism Hindley-Milner style type inference
higher-kinded types and type classes full tail call elimination
:a polymorphic effect system an extensive standard library
:purity reflection Visual Studio Code support
:region—based memory ... and more

50

Summary (2/2)

Flix is a new) , and programming language.

Flix is ready for use!
Flix has a fully-featured Visual Studio Code extension.

Flix has a website, online documentation, and a playground.
The Flix Standard Library is extensive.

Thank You!

Flix is open source, freely available, and ready for use:

51

https://flix.dev/

	Slide 1: An Introduction to Functional Imperative Programming in Flix
	Slide 2: Outline
	Slide 3: The Flix Principle
	Slide 4
	Slide 5: Type and Effect System
	Slide 6: Purity
	Slide 7: Impurity
	Slide 8: Effect Polymorphism
	Slide 9: Catching Bugs
	Slide 10: ① Summary: Effect System
	Slide 11
	Slide 12: Region-based Memory
	Slide 13: Example: Sorting
	Slide 14: Example: Adding Two Numbers
	Slide 15: Example: Swapping Elements
	Slide 16: Example: ToString
	Slide 17: ② Summary: Region-based Memory
	Slide 18
	Slide 19: Iterators in Action
	Slide 20: The Iterator Data Type
	Slide 21: Iterator API
	Slide 22: Using Iterators
	Slide 23: Using Iterators with Latent Effects
	Slide 24: The Collectable Type Class
	Slide 25: Using Collectable
	Slide 26: Syntactic Sugar: Foreach-Yield
	Slide 27: A “Real-World” Example
	Slide 28: ③ Summary: Iterators in Action
	Slide 29
	Slide 30: Purity Reflection
	Slide 31: Selective Parallelism
	Slide 32: Example I
	Slide 33: Example II: Automatic Parallelization
	Slide 34: Selective Laziness
	Slide 35: A Fresh Take on Data Transformations
	Slide 36: ④ Summary: Purity Reflection
	Slide 37
	Slide 38: Visual Studio Code Support
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Additional Resources
	Slide 48: The Flix Team
	Slide 49: … And thanks to our sponsors!
	Slide 50: Summary (1/2)
	Slide 51: Summary (2/2)

