GOTO
AARHUS 2022

Linda Stougaard Agenda
Nielsen, Ph.D.

Director Data Science
Ava AG Presenting ava — vision and products

The problem - two examples
Possible solutions
Remaining challenges

Q&A

Wearable devi

* Heart rate,
breathing rat

* 200’000 use
every night

Applications:
* Fertility app

2022 | Advancing women’s heaﬁ

D

Ava’s vision is to assist women throughout their life with their reproductive health

Contraception

Helps young Doubles Monitors Fully Monitors for

adults make S i chances of for healthy certified healthy peri-

sense of their pregnancy pregnancy digital birth menopausal

bodies and control life

cycle (in progress) (not started)
ava fertility app ava prevent app

Contraception Contraception

Pregnancy — Pregnancy

Contraception

How does it work

Signal value

[Fertile

Perfusion

Breathing rate

Skin temperature

Heart rate variability
ratio

Resting pulse rate

Ovulation

Wearable Sensors Reveal Menses-driven Changes in Physiology and Enable Prediction of the Fertile Window:
an Observational Study, Goodale, B. M., Shilaih, M., Falco, L., Dammeier, F., Hamvas, G., & Leeners, B. (2019)

© Ava 2022 | Advancing women’s health

@,

Medical research

* Hormonal changes throughout cycle,
pregnancy, infections, menopause

* Influence on physiological signals

Clinical trials

* Cooperation with research institutes
* Certification and postmarket surveillance
* Statistical analyses

Machine learning

* Signal processing
* Classical statistics and machine-learning
* Neural Networks

* Constraints on noisy data and risk

A% N
4 A 4 %

ZC3
b
4y
()
Jez
.,S
(=
()
c
(@)
2
o
i=
()
&
©
>
©
<

‘Ava 2022

©

The problem

2 examples

Example 1: re-process all raw data files

Parse, split, filter
Extract nightly features
Assess quality

© Ava 2022 | Advancing women’s health

EXISTING

Production code

Python module for
data processing

Scaling solution

Spark on AWS

Challenges

- Spark own
language

- Re-implement
solution

- Maintain 2 parallel
implementations

@,

Example 1: re-process all raw data files

Parse, split, filter
Extract nightly features
Assess quality

© Ava 2022 | Advancing women’s health

@,

OLD

NEW

Production code

Python module for
data processing

Scaling solution

Spark on AWS

Parallel on AWS

Challenges

- Spark own
language

- Re-implement
solution

- Maintain 2 parallel
implementations

- Additional
implementation of
infrastructure to
run parallelisation

10

Example 2: Re-train a tensorflow model

Tensorflow model — not the issue (ok packaged)

Data handling:

- Input data into tensor

- Normalisation

- Filtering of data (outlier detection)
- Model output into app input

Scattered all over the code

- Impossible to follow and to maintain / extend

Different code than used in training

- Impossible to prove consistency between eg. outlier
handling in training code vs. production code

© Ava 2022 | Advancing women’s health

Well-known issue a.k.a “glue code”

- supporting code for getting data in
and out of generic ML packages

- ~95% of code
- anti-pattern

Re-implementation of code

@,

1

© Ava 2022 | Advancing women’s health

i

1

i
it
il
I i
i

i

il
> Ez, i
.Jl),l’ f

e
—
——
—
=

—

12

Solutions

Just a question of writing good code, right?

Re-use of code

- But some-one has to write the code
that can be re-used

- And it may require additional
infrastructure (eg. batch processin

- And what about experimentation:
modifying code slightly in various
ways

© Ava 2022 | Advancing women’s health

@,

Experimentation / research

Research code

e e & fertility - Jupyter Notebook X +

v
C (@ localhost:8888/notebooksfertilty.ipynb o %)% A = O @ (vpsate)
»

B3 private E3 planning links E3 currentwork [E3 tools EJ techhelp [E3 toread EJ interesting E3J docu AR dict [J) @ Keeper® Passwor...

: Jupyter fertility (autosaved) a Logout

File Edit View Insert Cell Kernel Widgets Help Not Trusted | Python 3 (ipykernel) O

ST OIED T Scientific tools are different

1024 5 23 12 11 11.500000 23.750000 : -5.546763 -8.5 -11.750000 11.333333

° Ex Jupyter Notebook

1023 25 14 11 12.039427 17.487455 . -3.546763 -2.2 -3.487455 10.600000

1023 29 19 10 11.000000 14.000000 . 1.453237 2.8 5.000000 10.600000

1023 Z 27 17 10 10.500000 16.500000 .2 -0.546763 0.8 0.500000 10.600000 ¢ Li n e - by - li n e exe C u ti O n

1023 27 16 11 10.333333 16.666667 . -1.546763 -0.2 -0.666667 10.600000

1023 26 15 11 10.500000 16.500000 .2 -2.546763 -1.2 -1.500000 10.600000

vs x 16 columns

Iterative approach

In [143]: for phase in ['follicular', 'luteal']:
user_stats[phase + " length"].hist(histtype="step")
fig = plt.gcf
L9 = PIGCE() ee(ll, 6) °* Experimentation requires trial & error
median = np.round(np.median(np.abs(user stats[phase + ' length'])), 3)
mean = np.round(np.mean(np.abs(user stats[phase + ' length'])), 3)

st = np.zound (np;sta (np.abs(user_stats(phass + * length' 1)), 3) * Lot of alternative code for different approaches

plt.title(phase + " length ({} cycles, median = {}, mean = {}, std = {})".format(len(user_s
plt.legend()

ombmerio * Often incorporates with external tools (ex tensorboard for
Bt.s ow“

follicular length (278 cycles, median = 17.0, mean = 17.547, std = 5.141) t ral n I n g)

Scientists are generalists

* “One solution to fits all”
-> End up with long scripts that can do EVERYTHING

* Not specific to single problem (many trials)

© Ava 2022 | Advancing women’s health 15

@,

Transitioning from research code to production code

Research code ‘ Production code Consequences / differences
Flexibility (can do everything) Specialised (one purpose / Full of redundant code
fixed final version)
Manual usage Automated repeated usage |No focus on stability, exception
handling, and unit testing
Used by 1 person Maintained by many people Not following best practices
Row by row execution Script execution Not object oriented / patterns
Stand-alone Interacting with system No clear interfaces
Data from large data sets One data point from stream Data handling is different
Need parallelising within Need parallelising around Need restructuring and
optimising

© Ava 2022 | Advancing women’s health 16

Machine learning code into production (bridging the chasm)

© Ava 2022 | Advancing women’s health

Test and debug

Automation

Configuration

Monitoring

O

Production

Ressource
management

Security

Data handling

17

Required infrastructure surrounding lifecycle of ML code

Glue code (ML):

- Getting data in and out of
ML packages

Glue code (SW):

- Connecting incompatible
components

- No contribution towards
requirements

© Ava 2022 | Advancing women’s health

Configuration

Automation

Testing and Resource

Data collection :
debugging management

Data Model analysis

verification

Process
management

Feature engineering
Metadata management

@,

Serving
infrastructure

Monitoring

18

Who should implement all this glue code

Educate researchers to be good SW devs

NO!
* No interest / no skills in this area

 Focus on research / modelling / data
processing

© Ava 2022 | Advancing women’s health

Let SW devs build the code

Depends...
* Parallel implementations

* |Inconsistency problems
 Time to market

@,

1ke)

O

High level architecture

Back-end team [java, kafka, aws] DS team [python]

A

|

Firmwaxe team MobileAteams
| o \ Signal
$ processing
: nightly %
Q\é(physiological tésglr cilata ju U l
]9\ data N ally logs e - O.g
—————— [—c processing
'V i data insights S
\ predictions & Algorithm
O

handling

devops: infrastructure, integration, code versioning, automation, scaling, monitoring

© Ava 2022 | Advancing women’s health 20

O

ML modules as microservices

Experimentation Production

Monitoring
Ressource

management

Test and debug

Automation

<enda
culrirnidnication

user acce |
security, ¢ Security
handlin

Configuration =na

Data handling

==
]

devops: infrastructure, integration, code versioning, automation, scaling, monitoring

© Ava 2022 | Advancing women’s health 21

Modularise the DS modules

Algorithm module

Kafka connector
Input/output handling
Logging and monitoring

Unit testing

Docker, Jenkins integration
Setup. dependencies

Business logic

Load and execute a trained model

© Ava 2022 | Advancing women’s health

Infrastructure
utilities

O

22

O

Microservices and modularising the common code

Pip installable python module Production

Experimentation

Infrastructure
utilities

Backend:
communication,
user access,
security, data
handling

Front-end

Clear interfaces

==
]

devops: infrastructure, integration, code versioning, automation, scaling, monitoring

© Ava 2022 | Advancing women’s health 23

Inject trained models

© Ava 2022 | Advancing women’s health

Platform / framework

for experimentation
and evaluation

— @&

@,

24

@,

Most popular mlops tools for managing ML life cycle

} Collect
7 Kubeflow mlflow
Run and
Google Databricks monitor
Tensorflow (TFX) Python Machine
Pipeline based Experimentation based Learning
. . Life Cycle
Deploy and manage complex Tracking of experiments analyse
ML systems
Kubernetes infrastructure Local or cloud, eg develop
(more complex) locally and track remote

and
evaluate

© Ava 2022 | Advancing women’s health 25

/N

mlflow

Iterative experimentation:
develop, train, evaluate, compare

Model
registry

ml

m | Experiments

Experiments

Default
my_exp
pipeline1
prepare_data

train_pipe_0613

Models

train_pipe_0613 (]

© Track machine learning training runs in an experiment. Learn more

Experiment ID: 4

» Description Edit

£ sRefresh

=z BColumns

Showing 8 matching runs

© Ava 2022 | Advancing

0|0|0|0|/0/0|0|00

1 Start Time
© 24 minutes
@ 3 hours #fic
©@ 3 hourffagc
@ 4 hoffrs agc
© 4 jfours agc
@ # hours agc
& 5 hours agc

@ 5 hours agc

Duration
6.1min
4.8min
4.4min
4.5min
21.7s
11.6s
8.8s
8.1s

Download CSV&,

Only show differences

Run| User

linda
linda
linda
linda
linda
linda
linda

linda

Source

L] train_pipel
L train_pipel
[train_pipel
L] train_pipel
[train_pipel
L) train_pipel
L train_pipel

L train_pipel

\V Start Time

Q

Version
1f7df2
b4dfb3
b4dfb3
b4dfb3
b4dfb3
1b6957
1b6957

1b6957

m I Experiments Models

train_pipe 0613 > Run fe838e59bfc149daada83960fcfOc465

Run fe838e59bfc149daada83960fcfOc465

Date: 2022-06-13 21:41:43
User: linda

Lifecycle Stage: active

» Description Edit

» Parameters (3)
Metrics (8)
» Tags

v Artifacts

v W closing-model-pipeline
B MLmodel
B conda.yaml
B model.pkl
B requirements.txt
B3 ov+1_distance._distribution.png
B raw_scores.csv
B raw_scores.txt

Source: LI train_pipeline.py

Duration: 6.1min

Full Path:./mlruns/4/fe838e59bfc149daada83960fcfOc465/artifacts/ov+1_distance._distribution.png &
Size: 18.28KB

women’s health

Git Commit: 1f7df2e2bbd5c(

Status: FINISHED

All time

Search -

Filter

Clear

Metrics < Parameters

Models close score closedcyc cli ea mi mean_tht score threshold model n_iter

 lowess-gri... -2.597 0.35 (0.366 -2.629 0.175 se... 20.0
I lowess-gri... - 0.361 = 0.359 -2.652 0.185 se... 20.0
 lowess-gri... 0.344 - 0.364 -2.629 0.243 se... 10.0
£ lowess-gri... 0.362 - 0.358 -2.657 0.186 se... 10.0
$ lowess-gri... 0.333 - 0.38 -3.167 0.194 Se.. -

I lowess-gri... 0.556 - 0.257 -2.222 0.181 se... -

§ lowess-gri... W 444 - 0.291 -2.444 0.194 se... o
£ lowess-gri... 0.4%¢ . 0.298 -2.444 0.173 se..

ml Experiments Models

Registered Models > lowess-gridsearch-aacm

lowess-gridsearch-aacm
Created Time: 2022-06-13 17:46:55 Last Modified: 2022-06-13 21:47:50
» Description Edit

» Tags

¥ Versions All Active O

Version Registered at

Version 4 2022-06-13 21:47:50

Version 3 2022-06-13 18:47:38

Version 2 2022-06-13 18:19:06

Version 1 2022-06-13 17:46:55

run_id

4db38753...
4db38753...
4db38753...
4db38753...
08629a84...
08629a84...
08629a84...
08629a84...

@,

Experimentation

Try out different models and data sets
Track: parameters, metrics, and artifacts

Comparison between experiments

Model registry

Store trained models for later use
Load selected trained model by ID

Advantages

Tracking of experiments
Reproducibility (models, params, data sets)
Easy deployment of trained models

27

Everything needed for serving model is automatically saved

~ Project ~

Bl data

=7
v [closing_algo - ~/work/repo/closing_algo CC-3383-aw

- datahandler

>
>
> evaluate_algoworker
A

¥ miruns

" .trash

v o
>

M 0d2bd35b61b74f0dad443838ed64beccd

o README.md

"M Oedd84ca89bh9435eb8773cd712070145

Ml artifacts
v [closing-model

e conda.yam|

| model.pkl
requirements.txt

= NN LLANE N

M 0fbbff4079dc47b5a95ba74b0c2b9f84

M 1b3ede8c3f544abcad32686bash1a426
M 1c84b30255ded476b9ab8b5b44369e4d6
M 1d537fbb1ab34da28bbd549c09d5b 691
M 0001ealebb9ed43faSbfed912a1445e41

© Ava 2022 | Advancing women’s health

= train.py s Miruns/.../condayaml|

artifact_path: closing-model
flavors:
python_function:
env: conda.yaml
Loader_module: mlflow.sklearn
model_path: model.pkl
python_version: 3.7.11
sklearn:
pickled_model: model.pkl

serialization_format: cloudpickle

sklearn_version: 1.0.2

= False

model_vvuid: 2552f3fc84dl4f9fbd3c7df4fl98adea
run_id: Oedd84ca89b9435eb8773¢cd712070145
utc_time_created: '2022-03-22 17:17:04.702535"

n

@,

28

Follow pattern from scikit-learn (sklearn)

Standard classes eg: class FertilityModel(BaseEstimator, ClassifierMixin, metaclass=abc.ABCMeta):
MODEL = "algo_model"™
e RandomForestClassifier MODEL_PARAMETERS = "algo_model_parameters”

* BaggingClassifier
* GridSearchCV

e StandardScaler @abc.abstractmethod
def fit(self, X=None, y=None, sample_weight=None, check_input=True):...

def init (self):55%

°* Pipeline

@abc.abstractmethod
def predict(self, cycle: CycleData, *args, *xkwargs) -> (np.ndarray, np.ndarray):...

@classmethod
def get_model_name(cls):...

def serialise(self) -> dict:...
def score(

self, cycle: CycleData, true_fertility_indications, sample_weight=None
) => Tloat: %

© Ava 2022 | Advancing women’s health

@,

@,

Mlflow for experimentation and model serving

Experimentation Pip installable python modules Production

Signal
analysis

Some data

handling Signal

mili’ic

Iterative experimentation:
develop, train, evaluate, compare

Verification - Model
d‘ registry

devops: infrastructure, integration, code versioning, automation, scaling, monitoring

Signal
processing

User log
processing

/)]
D
O
(O
Y-
-
O,
4
C
-
(O
e
O

Algorithm
handling

© Ava 2022 | Advancing women’s health 30

Summary
And challenges

@,

Solution at ava

Separate data science modules as
micro-services with clean
interfaces to the rest of the
system (most of the glue)

Experimentation A ettt ole (el i iize Production

Separate parts of each data
science module that is related to
standard software tasks (some of
the glue)

The core part is the models, the
lifecyle is managed by a mlops

Model
tool and a trained model is stored

in a blob

Clear interfaces

. A

devops: infrastructure, integration, code versioning, automation, scaling, monitoring

© Ava 2022 | Advancing women’s health 32

Remaining challenges

It is still possible to build a mess

° Follow best practices
°* Recognize when code can be re-used
* Communication to prevent duplication

It is out of comfort zone for most researchers

* Different tools

°* Qutside core competences

°* Need training and support

* Still some researchers will never go down this path...

ML engineer / SW developer is needed for parts
° To write the glue
* Use same libraries and language

* Coordination and communication

Not solving all problems (eg. Example 1)

© Ava 2022 | Advancing women’s health

— and the solution is algile?

4 Cross-functional teams:

researchers and data engineers / sw devs
T-shaped skills

v’ Pairing up, code review

v Work on different projects

© Ava 2022 | Advancing women’s health

4

© Ava 2022 | Advancing women’s health 4

DON'T FORGET TO
RATE THE SESSIONS

GOTOaar

Rate a minimum of 5 sessions and
claim your reward at the
Registration Desk at the Trifork Hall

