Practical event sourcing

with EventFlow

by Rasmus Mikkelsen
https://github.com/rasmus

Me?

eBay/Schibsted at DBA, Bilbasen and Bilinfo
Backend developer
DevOps engineer
Infrastructure architect

SiteOps and on-call
Working as SRE at Schibsted Data & Tech
= Support companies with ~100 k8s clusters
Created EventFlow, an open source project
First time doing a public talk &

This talk

Brief introduction to event sourcing

See how to get started with event sourcing
Convince you not to use event sourcing
... then talk about when use it

Introduction to

event sourcing

Traditional service

x

Cceseatat.on]

" |

Vowigs- N
JPT——

Traditional data store

ID FullName Age

1 rasmus mikkelsen 21

e [Dis aunique key

Traditional data store

e CRUD: Create, read, update, delete

e Stores current state

e Audit is stored separate (for critical systems)
e Awesome supportinlanguages and ORMs

CRUD data stores

"id": 1,
"fullName": "rasmus",
"age": 21

"id": 1,
"fullName": "rasmus",
"age": 25

Event sourcing

Stores changes as individual objects
Append only

Current state is sum of all changes applied in order
Implementations often custom made

Design is often a result of infrastructure preference

Event sourcing

ID Version Event Data

Created fullName: rasmus m
age: 21

NewAge age: 23

NewAge age: 25

e ID and Version form an unique key
e Version specifies the order of events

Event sourcing

id": 1,
"version": 1,
: "Created",
2
: "147.29.150.82",
1ia": "browser"

"fullName": "rasmus mikkelsen",
"age": 21

}

e Events have two components, data and metadata

Event sourcing

"id": 1,

"version": 2,

"type": "NewAge',

"meta" : {
"ip": "147.29.150.82",
"via": "browser"

Y

"event": {
"age": 23

}

Event sourcing

"id": 1,

"version": 3,

"type": "NewAge',

"meta" : {
"ip": "103.228.53.155",
"via": "mobile-api"

}I

"event": {
"age": 25

}

Event sourcing key points

Current state is the sum of all events, you need to
apply every single one in order

ID and Version form a unique key

Events are stored in an append only model

Events are immutable - never ever,_ ever change them
Event often relates to some business/user action
Provides an excellent audit trail

H

EventFlow

e Createdin 2015
e MIT licensed
o Written .NET/C#
s Concepts are similar to other frameworks and
languages

General event sourcing concepts

represents a request to change the
system
an entity, or group of entities, that are
viewed as a single unit and updated together
represents something that has
happened, thus cannot be changed

Additional EventFlow concepts

Maps a specific command to an
aggregate
. Wraps the aggregate event and
metadata

Overview of EventFlow concepts

i Comvand , P l (0%?:4 "" m i “» Aﬁﬁ“ﬁd" l

‘?’&‘H"' EQM+
Y o
23

Command

Command

CreateUserCommand : Command<UserAggregate, UserId

string FullName {
int Age { H.

CreateUserCommand (
Userld aggregateld,
string fullName, int age)
: base (aggregateld)

FullName = fullName;
Age = age;

e Value object that represents an action to take

Command handler

Command handler

CreateUserCommandHandler
ICommandHandler<UserAggregate, UserlId,
IExecutionResult, CreateUserCommand>

Task<IExecutionResult> ExecuteCommandAsync (
UserAggregate aggregate,
CreateUserCommand command,
CancellationToken cancellationToken)

result = aggregate.Create (
command.FullName, command.Age);
Task.FromResult (result) ;

e 1-to-1 relation to a specific command
e Defines how to apply a command to the aggregate

Aggregate

| | 1C7l‘" "o\ ,“ d‘ .
i(nord ,-’l(.mvww(’-)‘” | i 11

a
Shie | € 4

Aggregate

UserId : Identity<UserId>

UserId(string) : base (

UserAggregate : AggregateRoot<UserAggregate, User

string? FullName ({
int? Age { ;

UserAggregate (UserId 1d) : base(1d)

Add method to mutate aggregate

UserAggregate : AggregateRoot<UserAggregate, User

IExecutionResult Create(string fullName, int age)

(age < 13)
ExecutionResult.Failed ("Too young");

Emit (CreatedEvent (fullName, age), GetMetadata()):

ExecutionResult.Success () ;

e CanEmit or
. represents "no change"

Command

: 1C ‘A
D 1(0%%] @ D

Event for user creation

]
CreatedEvent : AggregateEvent<UserAggregate, User

string FullName { g
int Age { ;o)

CreatedEvent (
string fullName,
int age)

FullName = fullName;
Age = age;

The Apply method

UserAggregate : AggregateRoot<UserAggregate, User

Apply (CreatedEvent e)

{
FullName = e.FullName;

Age = e.Age;
}
}

e Responsible to updating current in-memory state
e Executed on

= ...every Emit

m ... every time the aggregate is loaded
e One Apply for every event type

Overview again

: Comvand [~ (0%?:4 "‘mi" Aﬁﬁ“ﬁd" l

*’ | | 2] e “W“J
=- 8-

... and in code

(userId, fullName, age) = (UserId.New, "rasmus mikkelsen",

command = CreateUserCommand (userId, fullName, age):;
executionResult = __commandBus.PublishAsync (command) ;

userAggregate = _aggregateStore.LoadAsync<UserAggreg
userld) ;

All good, but what about reads?

e We could just load the aggregate €

e ... butreally slow if enumerating aggregates
e ...wantto query by something else than ID
e We need something else

CQRS to the rescue

and
Simply separate write and read operations

Often to different types of datastores, e.g.
n MS SQL Server, PostgreSQL, ...

_ Elasticsearch, Redis, ...

Fits very nicely with event sourcing

Event sourcing + CQRS =
\White

i‘ QC c..sc,v\‘l'oA-‘ O I

Event sourcing + CQRS =
\White Read

i /?cc,se,wl'a\»‘.ov\ I
-

] | Sz
el] |

<+

i Aiini&c Store !
i

=) !

e] | ¢
'

Caiae

=

Event listeners in EventFlow

UpdateReadModelWithCreatedUser
ISubscribeSynchronousTo<UserAggregate, UserId, CreatedEvent>

Task HandleAsync (
IDomainEvent<UserAggregate, UserlId, CreatedEvent> domainEv
CancellationToken cancellationToken)

Task.CompletedTask;

All done?

o ¥ Optimized read models

e M Cool domain using event sourcing
e @ ...need FirstName and LastName, not FullName

Problems

Already live with millions of CreatedEvent

Need v2 event with FirstName and LastName
Not allowed to delete/change events
Critical system, boss says "ZERO downtime!"

Upcast/upgrade events

Upgraders in EventFlow

Executed when events are
Can has as many as you like (performance)

Keep them simple!
= v1tov2 upgrade
= v2 tov3 upgrade
Executed in alphabetical order

Upgraders in EventFlow

N il N w r‘«.‘.‘-‘

‘\/\/\w\,v_.
L-.-—-——-—-—-—-—J

T

(g ea] e)

V2 event

]
CreatedEventV2 : AggregateEvent<UserAggregate, Us

string FirstName {
string LastName ({
int Age ({ g |

CreatedEvent (
string firstName, string lastName, 1nt age)

FullName = fullName; LastName = lastName; Age = age;

Event upgrader in EventFlow

UserCreatedEventUpgrader : IEventUpgrader<UserAggregate, UserId>

IEnumerable<IDomainEvent<UserAggregate, UserId>> Upgrade (
IDomainEvent<UserAggregate, UserId> domainEvent)

createdEvent = domainEvent IDomainEvent<UserAggregate, UserId, CreatedEvent>;
(createdEvent ==) |

domainEvent;

r

nameParts = createdEvent.FullName.Split (' ', StringSplitOptions.RemoveEmptyEntries) ;

createdEventV2 = domainEventFactory.Upgrade<UserAggregate, UserId>(
domainEvent,

CreatedEventV2 (
nameParts[0],
nameParts[1],
createdEvent.Age

));

createdEventV2;

Updated aggregate

UserAggregate : AggregateRoot<UserAggregate, User

string? FirstName {
string? LastName ({
int? Age { ;

UserAggregate (UserId 1d) : base(id)

Updated aggregate Apply method

UserAggregate : AggregateRoot<UserAggregate, User

Apply (CreatedEventV2 e)

FirstName = e.FirstName;
LastName = e.LastName;
Age = e.Age;

Update aggregate mutate method

UserAggregate : AggregateRoot<UserAggregate, User

ITExecutionResult Create (
string firstName, string lastName, int age)

{
(age < 13)
ExecutionResult.Failed ("Too young");

Emit (CreatedEventV2 (firstName, lastName, age), GetMeta

ExecutionResult.Success () ;

... and update the CreateUserCommand
... and update the CreateUserCommandHandler

Domain v2 go-live?

v
.W
T

O

60
N

>
Om

©
=

O
a

Updated domain v2 go-live plan

& multiple instances, v1 and v2 will both be live at
the same doing rollout

1) Rollout v1.1 thatis able to both v1 and v2

2) Rollout v2 that v2 events, without v1
Remember to old events, these are needed for
reading and upgrading

Success &

Event sourcing, the bad parts

e Alot of ceremony. Any action requires a lot of code
A lot of different ways to fill in the missing pieces
Poor performance on writes, exceptionally bad with
many events
Too many concurrent updates can make a service
useless
Read models become eventually consistent, which
adds complexity

Event sourcing, the good parts

e Fits very nicely with an event drive architecture

e Awesome together with CQRS, but that's just for
reads

e Can provide an excellent link do user/domain
actions

e Automatic retries for concurrent updates

Don't use event souring...

Don't use it in the wrong places

e Notin services with a lot of changes
e Notin high performance/concurrent writes
e Not in services with low importance

Don't use it for fun at work,
unless doing an experiment or to learn

Don't force the decision to use event sourcing
Don't enable every tool in the toolbox, start small
Don't make simple domains overly complicated

Don't make first project
too complicated

f you are unsure of the domain, it can cause a lot of
oreaking changes, which requires a lot of work
Don't use all the theories, initially agree how to do it
Many opinions on how to do “proper” event
sourcing. Agree on what to do (and not)

Be conscious about har deep into the mythical DDD

waters you want to go

Don't underestimate
storage usage

Developers @ fo 4
SiteOps B & &

Append only model
Events are stored forever, by default
Define when you archive and/or delete events

Snapshot is your friend for long lived aggregates

Consider event souring if...

If auditing is important

e Very easy to document what happened
e View flow leading up to a complicated bug
e Reproduce bugs in tests by injecting events

If data recovery is important

An append only model, hard(er) to delete data

Fix data corruption caused by bug

Fix data corruption caused by wrongful/malicious
edits

Easy restore aggregates to a specific time
In-place fix/skip/map of existing events

If it fits within your infrastructure

e Event driven (micro) service infrastructure
e ...remember to implement anti-corruption
e Supports an eventual consistent architecture

A few examples

Example - orders

Example - listings

Event sourcing

e |san awesome piece of technology...
e ... buttypically not the right one

Do you really need

event sourcing
for your next project?

Questions?

e Rasmus Mikkelsen
e https://github.com/rasmus/
e https://docs.geteventflow.net/

