
@olefriisJune 15, 2022

We’re Coming for Your Flaky 
Tests!

Ole Friis Østergaard



@olefriisJune 15, 2022

Agenda

The problem with flaky tests
Flaky tests at GitHub
Strategy
Burning down flakes to 0
Examples
How to stay at 0 flakes

Questions



@olefriisJune 15, 2022

Ole Friis Østergaard

Engineer at

@olefriis
github.com/olefriis
Blog: olefriis.github.io
Play Stunt Car Racer in your browser: olefriis.github.io/play

Me Me Me

https://twitter.com/olefriis
https://github.com/olefriis
https://olefriis.github.io/
https://olefriis.github.io/play/


@olefriisJune 15, 2022

Based on Team Effort

Things I say may imply that I did all of this myself.

This is a lie.

I work in a wonderful team, and we worked on all of this together.



@olefriisJune 15, 2022

Two Caveats!

You may have entirely different kinds of flaky tests than we do!

Despite being GitHub-centric, no actual GitHub code will be 
shown.



The Problem with Flaky 
Tests



@olefriisJune 15, 2022

What’s a Flaky Test?

Seemingly regular test that switches from success to failure for 
no apparent reason.
In practice it’s hard to reproduce locally and fix. (Otherwise 
somebody would have already done it.)



@olefriisJune 15, 2022

Classic Unit Test



@olefriisJune 15, 2022

Rails Unit Test



@olefriisJune 15, 2022

Example (involving math!)

10_000 tests in your suite.
1% are flaky.
=> 100 flaky tests.
Each flaky test will fail 1% of the time.

Your builds will fail 100% of the time!!!



@olefriisJune 15, 2022



@olefriisJune 15, 2022

Flaky Test Detection

Various ways of detecting flakes.
Azure DevOps:
• Run the whole test suite from a known “good state” 500 times. 

(Videos available on YouTube.)
GitHub:
• Recording test failures and successes, marking tests as flaky 

on too many errors.



Strategy



@olefriisJune 15, 2022

Accelerate, Chapter 4!

”When the automated tests pass, teams are confident that their 
software is releasable.”

“it’s worth investing ongoing effort into a suite that is reliable.”

[…flakes…] “you could just delete them. If they’re version-
controlled (as they should be), you can always get them back.”

Nicole Forsgren, Jez Humble, Gene Kim



@olefriisJune 15, 2022

Delete or Fix!

Basic plan: Create pull requests for deletion of every flake (one 
pull request per code-owner), let them “simmer” for 2 weeks, then 
merge those whose flakes hadn’t been fixed.

Ignore flakes that didn’t occur within the last week.
Metrics, graphs.
Various ideas to keep the flakes at 0.



@olefriisJune 15, 2022

How Much Effort?

Thousands of flakes to start with.
A pretty big codebase.
Team of 4 people.
About 3 months.



@olefriisJune 15, 2022

How did it go?

After 2 rounds of pull requests: Still around 50 flakes.
After a few weeks of letting teams take care of their own tests: 16 
flakes.
New flakes are still being introduced, and existing flakes pop up 
again.
Now wrapping up “actual work” and entering the “long-term 
mode”.



Psychology



@olefriisJune 15, 2022

Large Surface Area

Our team is small
GitHub is large
Many developers are introverts



@olefriisJune 15, 2022

People’s Reactions to Deleting Their Tests?

“Sounds sensible!”

- Colleague X
“What a great idea!”
- Colleague Y



@olefriisJune 15, 2022

Deleting a Test is Hard!

Not technically, but mentally.
You keep the production code, but remove the safeguards.
This is much harder than just deleting production code.

“Sounds sensible! But what if we…”

- Colleague X
“What a great idea! But let’s…”

- Colleague Y



@olefriisJune 15, 2022

Flakes Drag You In!



@olefriisJune 15, 2022

Completion Principle

Completeness generates energy
and

incompleteness drains energy



Types of Flakes
(For us, at least)



@olefriisJune 15, 2022

Results of Hours of Debugging

I wonder…



@olefriisJune 15, 2022

Our Categories

Hard-coded database IDs
Implicit ordering of database results
Timing
Lack of test isolation
Time bombs
Other



@olefriisJune 15, 2022

Hard-coded Database IDs

Make tests easy to read.
Seems like good testing advice: Keep tests simple.



@olefriisJune 15, 2022

Hard-coded Database IDs



@olefriisJune 15, 2022

Hard-coded Database IDs

users table

id name

DB sequence

123

124

121

122

Paul

Ringo

John

George

120

121

122



@olefriisJune 15, 2022

Hard-coded Database IDs

How to avoid?

Linting rule against “create(:user, id: 123)” in tests?
Resetting database sequences between test suites?



@olefriisJune 15, 2022

Hard-coded Database IDs



@olefriisJune 15, 2022

Implicit Ordering of Database Results



@olefriisJune 15, 2022

Implicit Ordering of Database Results



@olefriisJune 15, 2022

Implicit Ordering of Database Results



@olefriisJune 15, 2022

Implicit Ordering of Database Results

How to avoid?

Two ways to go:
• Make tests more likely to fail.
• Make tests more deterministic.



@olefriisJune 15, 2022

Increase Likelihood of Test Failure

Code like this:
comments = Issue.comments.order(:created_at)

is essentially the same as this:
comments = Issue.comments.order(:created_at, “RAND()”)

So why not “fix” your ORM during test runs?



@olefriisJune 15, 2022

Increase Likelihood of Test Failure



@olefriisJune 15, 2022

Decrease Likelihood of Test Failure

When people write code like this:
comments = Issue.comments.order(:created_at)

they normally mean something like this:
comments = Issue.comments.order(:created_at, :id)

So why not “fix” your ORM?



@olefriisJune 15, 2022

Decrease Likelihood of Test Failure



@olefriisJune 15, 2022

Philosophy Segway: Decrease or Increase 
Likelihood of Test Failure?
Set your database sequences to specific values before test, or 
make them “more evil”?

Try to stabilize your external dependencies, or make them really 
unstable?

Make time go faster/slower, or just lock it down?

…and whatever else affects your tests…



@olefriisJune 15, 2022

Implicit Ordering of Database Results



@olefriisJune 15, 2022

Timing

Time passes!



@olefriisJune 15, 2022

Timing

How to avoid?

Same discussion as before:
• Timecop.freeze
• Timecop.scale(3600)



@olefriisJune 15, 2022

Timing



@olefriisJune 15, 2022

Lack of Test Isolation

One test alters global state, another assumes pristine state.
We know nowadays that tests should be run in a database 
transaction. But there are many other kinds of state that should 
be reset.
• Other databases (ElasticSearch, Redis, …)?
• Session information.
• Time zone settings.
• Rate limiting.
• …



@olefriisJune 15, 2022

Lack of Test Isolation

Succeeds
Fails



@olefriisJune 15, 2022

Lack of Test Isolation

How to avoid?

Add “state resets” to the global setup/teardown for your test suite.



@olefriisJune 15, 2022

Lack of Test Isolation



@olefriisJune 15, 2022

Time Bombs

Does anybody remember the year 2000?

Static test fixtures can become outdated and start to cause test 
failures.
Tests around midnight, summer/winter time changes, …



@olefriisJune 15, 2022

Time Bombs

File: valid_subscription.json



@olefriisJune 15, 2022

Time Bombs – Investigation!



@olefriisJune 15, 2022

Time Bombs – Investigation!

Whoa, a test started failing during the last 24 hours!
Look up test file and associated production code.
“git log” all the things.
Something changed in the last 24 hours!
”git revert” those changes.

You just re
verted the fix!



@olefriisJune 15, 2022

Time Bombs

How to avoid?

Occasionally run your tests time-shifted to a future date.
Fix the date for your test.
Lint against hard-coded dates in the future.



@olefriisJune 15, 2022

Time Bombs



@olefriisJune 15, 2022

“Other”

This is the biggest bucket!
Various inconsistencies between the tests and the code under 
test.
Floating-point rounding.
Flaky external dependency.
Actual production code issues.
…



@olefriisJune 15, 2022

Our Categories - Recap

Hard-coded database IDs
Implicit ordering of database results
Timing
Lack of test isolation
Time bombs
Other



Are We at 0 Flakes Now?



@olefriisJune 15, 2022

No, But…

The flakes we monitor are getting fewer and fewer.
Teams are generally very helpful in fixing “their” tests.
We’ve adjusted our monitoring a few times.
We’ll “squeeze” the remaining flakes to gradually cover more and 
more “low-impact flakes”.



Staying at ~0 Flakes



@olefriisJune 15, 2022

Stress New Tests

In CI, check which tests have been added and modified in a pull 
request. (GitHub has an API for that!)
Run these tests 100 times each, fail the build if any run fails.
This should make it harder to introduce new flakes.

Lots of ramp-up challenges, though.



@olefriisJune 15, 2022

Stress New Tests

Future ideas:
• Time-shift at random.
• Time-shift to before/after midnight.
• Time-shift to summer/winter time changes.
• Make time go slower/faster.
• Freeze time.
• Introduce randomness in the database results.



@olefriisJune 15, 2022

Updated Testing Documentation

We kept a “learning document” up to date when working on flaky 
tests, recording and categorizing the flakes.
It would be a shame not to incorporate this into the 
documentation on how to write tests.



@olefriisJune 15, 2022

Linters

Avoid “create(:user, id: 123)”.
In Rails: “Date.today” vs. “Date.current”.
In Rails: ”find_by” -> “find_sole_by”.

…and anything that fits your code base.



@olefriisJune 15, 2022

Automatic “Delete Test” Pull Request Creation

As a new flake is detected, automatically create a pull request 
that deletes the test.
Follow up after a week or two and merge the PR if the owning 
team hasn’t fixed it themselves.

This should be manageable by a single first responder.



@olefriisJune 15, 2022

No Size Fits All

Hopefully some food for thought.

…and we don’t even know if our flake strategy in GitHub will be 
successful in the long run…



Summary



@olefriisJune 15, 2022

Now You Know…

What’s a flaky test, why it’s a problem.
Suggestions for strategies for fixing flaky tests.
Some psychology involved.
Why fixing flaky tests is hard!
Categories of flakes.
Ideas on how to stay at 0 flakes.



Questions?


