

Scalable SQL databases
"NewSQL"

Jon Tirsen

Previously

Currently

SQL
Convenient

Scalable

NoSQLSQL →
Convenient

Scalable

Convenient

Scalable

NewSQLSQL → NoSQL →
Convenient

Scalable

Convenient

Scalable

Convenient

Scalable

Scalable

Vertical scaling

Cost function

Horizontal scaling

Cost function

Convenient

App

Data storage

Transactions

Aggregations
Joins

Database

NoSQL

Data storage

Transactions

Aggregations

Joins

Business logic

Business logic

SQL / NewSQL

Why SQL?

SELECT customers.id,
 SUM(order_lines.price) AS total_spend
FROM customers
JOIN orders
 ON customers.id = orders.id
JOIN order_lines
 ON orders.id = order_lines.order_id
GROUP BY customers.id
ORDER BY total_spend;

Mainstream

SQL Revival
PranaDB

Declarative

What - not How
SELECT customers.id,
 SUM(order_lines.price) AS total_spend
FROM customers
JOIN orders
 ON customers.id = orders.id
JOIN order_lines
 ON orders.id = order_lines.order_id
GROUP BY customers.id
ORDER BY total_spend;

NewSQL

ACID transactions

Joins/Aggregations/
Windowing functions

Indexes/Constraints

Relational modeling

Distributed

Auto partitioning/sharding

High scale

High availability

NoSQLSQL

Global ACID

Global indexes

Global constraints

Global joins

Wanna try one?

> docker run -d -p 4000:4000 pingcap/tidb

> mysql -h 127.0.0.1 -P 4000 -u root

...

mysql>

What has changed?

Everything is better
Network

faster
cheaper

more reliable
more of it

Disks
RAM
CPU

Everything is better
Data structures

Algorithms
Infrastructure

C

A P

Consistent

Available Partition 
tolerantNoSQL

NewSQL

Eventually consistent

Strongly consistent

Distributed ACID

Spanner style

Sync time

2 phase commit

RAFT/PAXOS for high availability

Log structured merge trees: "read the past"

Percolator style

Timestamp oracle

Local ACID

Built on top of key-value

SQL layer
Stateless

Query plans

Coordinate

Key-value
Persistent

Data

Indexes

SQL

When to use

Transactional

10ms - 100ms

High scale

writes per second

queries per second

storage volume

>1TB

Do you need strong
consistency?

Do you need SQL?

But! Plan ahead!

Issues

Avoid fan outs

Use global indexes

1. index 2. data

Avoid hot spots

Solve read hot spots

Solve write hot spots

Solve write hot spots

Q
ueue

"Tail shard"

Randomize IDs

Entity groups

Customer

Order

Line

Product

TiDB
CREATE TABLE customers(
 id BIGINT,
 PRIMARY KEY(id)
);

CREATE TABLE orders(
 id BIGINT,
 customer_id BIGINT
) PRIMARY KEY(customer_id, id);

CREATE TABLE order_lines(
 id BIGINT,
 customer_id BIGINT,
 product_id BIGINT
) PRIMARY KEY(customer_id, id);

CREATE TABLE products(
 id BIGINT,
 PRIMARY KEY(id)
);

Spanner
CREATE TABLE customers(
 id BIGINT,
 PRIMARY KEY(id)
);

CREATE TABLE orders(
 id BIGINT,
 customer_id BIGINT
) PRIMARY KEY(customer_id, id)
INTERLEAVE IN PARENT customers;

CREATE TABLE order_lines(
 id BIGINT,
 customer_id BIGINT,
 product_id BIGINT
) PRIMARY KEY(customer_id, id)
INTERLEAVE IN PARENT customers;

CREATE TABLE products(
 id BIGINT,
 PRIMARY KEY(id)
);

NewSQL

Scalable SQL built on
recent innovations in
distributed computing

Use it for scaling out
transactional workloads

Watch out for write hot
spots and wide fan outs

Thank you! 
Jon Tirsen 
@tirsen 
linkedin.com/tirsen

http://linkedin.com/tirsen

