goto;

GOTO
AARHUS 2022

[—\
\\\ = 1//

serverlesspresso
EES

aws
2

Who am I?

* Principal Developer Advocate — AWS
» Father of 5

* Brand new grandpa

* Drummer

* Foodie

» Twitter -> @edjgeek

aws
2

Intro

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

An event driven coffee ordering app
built with serverless architecture

8\\(\‘ A 4{) serverlesspresso

aws
2

The frontend applications

VUE.JS APPS HOSTED WITH AWS AMPLIFY CONSOLE

1. Ordering app: 2. TV display app:

« Loads menu .

« Scans barcode to get
order token .

« Sends order
« Displays updates

(\\(‘@’\/' serverlesspresso

Shows current
barcode

Receives order status
updates

Listens for store
open/close events

3. Barista app:

« Shows incoming
orders

 Enables order
completion or
cancellation

« Enables store
open/close events

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserve

What is Serverlesspresso?

Serverlesspresso is a coffee ordering app
built with serverless architecture:

1. Place an order on your mobile device.

2. The order appears on the monitor b
and the barista's tablet app. R

/7

3. You get a notification when the drink
is ready.

=0 Try it out! Go to:
\ - serverlesspresso https://s12d.com/coffee

https://s12d.com/coffee

SPresso

Where ?

{\\(\ N 4{) serverlesspresso

aws
2

AV\/S

- lnvent

1,920 orders
71 drinks per hour
3m 34s further reading

@ff';’ff Leasg
eohee ngse"""'ssp essol

aws
N

LE AP saudi Arabia

1,310 orders
63 drinks per hour
2m further reading

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Summit Tel Aviv
1,378 coffees!

Current record holder, beating
The Paris summit by over 400!

aws
N

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Serverless services used

‘

AWS Amplify Amazon Amazon Amazon
Console API Gateway DynamoDB EventBridge

AWS Step AWS AWS
Functions loT Core Lambda

SHAJ serverlesspresso

© 2021, Amazon Web Services,

, Inc. or its affiliates. All rights reserved.

High level architecture

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws
~ AWS Account
N Front ends : Order Manager service @ EventBridge gz%' Step Functions
! REST Event bus Order processing workflow
; API [| | Events
= o e Ei%‘ <S>HES < > @
] o—

API Step DynamoDB

Events
Gateway Functions table < N DynamoDB Get Shop status

Ordering

1
1
1
1
1
1
1
app |
1
1
1
1
1
1
1

QR validator service
Events

|
|
|
1
1
1
|
|
|
1
1
1
|
|
|
1
1
1
|
|
|
oc— ’
| REST (N E= >
| '7 [| —
: API
1
1
1
|
|
|
1
1
1
|
|
|
1
1
1
|
|
|

Emit - Shop not ready Emit - Workflow Started TT
Lambda DynamoDB

Display !
I
app 1 Gateway function table
'
I
I .
I EventBridge y - .
| Publisher service < >
: WebSocket @ Barista timedout
. : API Events
app I
I
| loT Core Lambda @
: function
b e e e e e e I

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws
~ AWS Account
- .
: M Front ends [Order Manager service @ EventBridge 5:%' Step Functions
! REST Event bus Order processing workflow
; API o= Events
—— [] N
= ® @ <> E::‘:" <>o=
o
API Step DynamoDB Events
Gateway Functions table -

Ordering

1
|
|
|
|
|
1
app : Shop Open?
|
|
|
1
|
|
|

QR validator service
Events

|
|
1
1
1
|
|
|
1
1
1
|
|
|
1
1
1
|
|
: | m—
. —> —> 0 > s
. API o
! e [—
|
|
1
1
1
|
|
|
1
1
1
|
|
|
1
1
1
|
|
|

o oS
API Lambda DynamoDB

Display :
app 1 Gateway function table
'
|
|
| EventBridge) »)
| Publisher service < >
- o
! API Events
Barista ' < . ’ , .
[N % Emit - order finished Emit - error timeout
app |
: loT Core Lambda @
function

Front Ends
3 web apps hosted on Amazon S3

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws
~ AWS Account
- .
: M Front ends [Order Manager service @ EventBridge 5:%' Step Functions
! REST Event bus Order processing workflow
; API o= Events
S — N
m 7 D-EEE
o
API Step DynamoDB Events
Gateway Functions table -
Ordering

QR validator service

Events

I

|

1

1

|

I

I

|

|

1

|

I

I

|

|

1

|

I

I

! oc—)
| REST Is capacity available?
. —>(\) —I= > paity
| API | | —
! | —— o—
I

|

|

1

|

I

I

|

|

1

|

I

I

|

|

1

|

I

I

|

1
1
I
I
I
1
1
app : Shop Open?
I
I
1
1
I
I
I

Emit - Workflow Started TT
API Lambda DynamoDB

Display :
app I Gateway function table
1 Generate Order Number
I
I
| EventBridge . - -
| PWYisher service < >
: WebSocket @ Barista timedout
! API Events
o 1< B <DNQ)
app | N
I
| loT Core Lambda @
: function
1

Access Layer

APls provide access to business logic
/- serverlesspresso EMSKECICECE

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

=
|

aws
N
B - -------
& Front ends :
|
|
(=) I
Ordering

|
|
|
1
|
|
|
app |
1
|
|
|
1
1
1

.

Display
app

AWS Account

REST
API

REST
API

API

Barista
app

|
|
|
|
|
|
|
|
|
|
|
| WebSocket
|
1
|
|
|
|
|
|
|

Order Manager service

@ EventBridge 5:::" Step Functions

Event bus Order processing workflow
Events

| —
D =
I | m—

API Step DynamoDB
Gateway Functions table

QR validator service

Events
Z DynamoDB Get Shop status

Shop Open?

Events

| —
D-B—E
o | —

API Lambda DynamoDB
Gateway function table

Publisher service

@ —

1oT Core Lambda
function

/, serverlesspresso

7 Is capacity available?

Emit - Shop not ready Emit - Workflow Started TT
Generate Order Number
EventBridge . - .
rules Events Emit - Awaiting Completion TT
@ Barista timedout

Events

Serverless event bus delivers multiple
messages about the state of each order

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

: M Front ends

i

|
1

1

|

|

|
Ordering 1
app |
|

|

|

1

1

1

|

Display
app

aws
~—

API EE
I <EE<I=
o

REST o —
API —> >0
il — o=

AWS Account

Order Manager service
REST

DynamoDB
table

API Step
Gateway Functions

QR validator service

API Lambda
Gateway function

DynamoDB
table

Publisher service

WebSocket

Barista
app

i »

= B

1oT Core Lambda
function

@ EventBridge
Event bus
Events
N
Events
P
Events
7
EvgfitBridge
rules Events
~
Events

Events

5:%" Step Functions
Order processing workflow

DynamoDB Get Shop status

Shop Open?

ListExecutions

Is capacity available?

Emit - Shop not ready

Generate Order Number

Emit - Awaiting Completion TT

Emit - order finished

Barista timedout

Emit - Workflow Started TT

Customer timedout
Emit - error timeout

Rules, route events to the relevant

downstream service

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

aws

~ AWS Account
- .
: M Front ends [Order Manager service @ EventBridge 5:%' Step Functions
! REST Event bus Order processing workflow
; API o= Events
—— [] N
= ® @ <> E::‘:" <>o=
o
API Step DynamoDB Events
Gateway Functions table -
Ordering

QR validator service

Events

I

|

1

1

|

I

I

|

|

1

|

I

I

|

|

1

|

I

I

: o— o
| REST Is capacity available?
. —>(\) —I= > paity
| API | | —
! | —— o—
I

|

|

1

|

I

I

|

|

1

|

I

I

|

|

1

|

I

I

|

1
|
|
|
|
|
1
app : Shop Open?
|
|
|
1
|
|
|

Display

i ot S
API Lambda DynamoDB
Generate Order Number

app Gateway function table

|
|
|
|
|
I E tBrid
ventori e
: rles Events
| Publisher service < >
: WebSocket Barista timedout
|
1
D
|
|
|
|
|
|

Barista
app
loT Core Lambda

function

API Events
< < <& Emit - order finished

Orchestration

AWS Step Functions orchestrates each
l/, serverlesspresso order from start to completion

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How it works

' M Front ends

=n

Ordering
app

Display
app

Barista
app

AWS Account

Order Manager service

REST
AP/ [| m— Events
O @ PN gf;.:‘. <0
: o —
| API Step DynamoDB
| Gateway Functions table
|
1
|
|
|
: QR validator service
1
I Events
I REST o —
; API —> —>oc—
e o—
API Lambda DynamoDB
Gateway function table
Publisher service
WebSocket

API Events

< % %

@ EventBridge

Event bus
Events
&
EventBridge
rules Events
N

Realtime

5:%" Step Functions
Order processing workflow

Emit - Shop not ready

DynamoDB Get Shop status

Barista timedout

Customer timedout
Emit - error timeout

Emit - order finished

loT topic updates web front ends

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws
~—

QR validator service

Throttles the queue to 10 drinks every 5 minutes
and prevents unauthorized orders

© 2021, Amazon Web Services, Inc. or

its affiliates. All rights reserve

QR code generation

* A new QR code every 5 minutes.

* Valid for 10 scans.

We are making drinks!

« Hidden once all scans are “used”.

23s

10 drink(s) remaining.

We will accept new orders soon.

aws

N © 2021, Amazon We b Services, Inc. or its affiliates. All rights reserve

QR code generation

QR validator service

Generate
. GET
* The display app makes a request] >(H)— QY
to generate the QR code and store Display Gorenzy famcion
the ID in DynamoDB.
Validate
. : = POST
The Ordering app, NELCSEREON ®)
request to validate the QR code
and ID app Gateway unction
aWS © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

Token bucket system

When a valid QR is scanned, it decrements the Available tokens number
and emits an event that triggers the order processor workflow.

Available tokens

1234423 10 1645200599999 41g_-KJHGT 1234423 1645200300000
1234123 8 1645628399999 6KJH_-FJ5Lh 1234123 1645628100000
5412322 1 1645449599999 9THHFFJHF 5412322 1645449300000
3435657 2 1645435199999 OCZomT756 3435657 1645434900000

DynamoDB validator-table

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Order Processor service

Orchestrates each order from start to completion

aws
2

AWS Step Functions

F

ULLY MANAGED STATE MACHINES ON AWS

Resilient workflow automation
Built-in error handling
Powerful AWS service integration

First-class support for integrating
with
your own services

Auditable execution history and
visual monitoring

aws
2

Define the workflow... = =

DEFINE ALL THE STEPS IN. MAKING A DRINK

Process for making a drink

1) Check the store Ls open

2) Get barista copacity

3) walt for the customer ovder - cancel i >
5 MmLnS

4) Generate aw order ey , =

5) Walt for barista to make drink - om/wd e
=25 mins . == ﬁ

&) Also handle cancelation bw austomer Or
barista

... then design visually with Workflow Studio

CODE WITH STATE MACHINES

REPLACE SPAGHETTI

Step Functions Workflow Studio

Flow

MOST POPULAR A

/S Lambda

Invoke

mazon SIN>

Publish

azon £LS

RunTask

AWS Step Functions

StartExecution

Glue

StartJobRun

B 1

COMPUTE

L Amazon Data Lifecycle ... »

hL Amazon EBS >

Amazon EC2 >

Elastic Inference >

&
hL AWS EC2 Instance Conn... P
&

Info

9 Undo

1ok

C Redo ® Zoomin

ventBridge: PutEvents
mit- Shop not ready

@ Zoom out @ Center

Start

Y

Lambda

ILLJ v Get Shop Status

Y

Choice state
‘ Q Shop Open?

A 4

h J

Lambda: Invok
i‘ Get Capacity Status

v

Choice state
ﬁ‘ Capacity Avialable?

A 4

Emit - Workflow Started TT

EventBridc PutEvents

Lambda: Invoke
izi, Generate Order Number

Cancel

Export ¥ ‘ | Form

Definition

Shop Open?

I urat Input Output

State name

Shop Open?

State type
Choice

Choice Rules

Default rule

Defines default state when no rule evaluates to true

-+ Add new choice rule

Comment - optional

check if Capacity is available

——

&=

@

Managing each coffee's journey

USING AWS STEP FUNCTIONS TO MANAGE EACH WORKFLOW EXECUTION

« Workflow ensures store is open and
baristas have capacity

Get Shop Status
k P

« Allows customer 5 minutes to order

before timing out / cancelling R swocpr

« Allows barista 15 minutes to make])\ et

before timing out / cancelling a
 Uses Lambda functions for custom ‘A :
logic; uses direct service B
integrations otherwise |

wok
‘ L Generate Order Number

v

EventBrid itEven
@ Emit - Waiting Completion TT

i
Y
Wait state
‘ @ LOG - In Production
i
‘ |
|
|
|
[
[

serverlesspresso

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

O

llll}'

SLO-MO VIDEO PHOTO

aws

N N

SQUARE

PANO

Emit- Shop not ready

Collect drink, learn about the order

7 journey, and share.

for a one-time login code.

Get Shop Status
Shop Open?
Get Capacity Status
Capacity Avialable?
Emit - Workflow Started TT
Generate Order Number
i LOG - In Production
Emit - Waiting Completion TT
Did baristar Il customer cancel ?
order was cancelled

Emit - order finished

Success

End

Check shop is ready, wait for
customer to submit order.

Resumes workflow which
generates new order
number. Wait for barista to
complete order.

Barista makes drink.
Workflow resumes and

mi-ee €MItS order completion

event.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Order Manager service

Handles order persistence to DynamoDB

aws
2

Order table

Each order is persisted to a DynamoDB table.
The entry is updated at various stages of the order lifecycle.

SK TS UID OrderNo TaskToken OrderState DrinkOrder
Orders 2 1645726 10 AAAAKgAAAAIAAAAAAAAA COMPLETED {"userld":"1","drink":"Cappuccino","modifiers":[]
346199 L Alp4umOgPw/FO3rqpCDVIE ,"icon":"barista-icons_cappuccino-alternative"}
AL+l/h+
aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

APl Gateway to DynamoDB

Order Manager service
/myOrders - GET s

/orders - GET |:|] = =

)

° Ordering Displa Barista
/0 rderS/{ld} - GET app aSPy app Gat\eF\’A'lay DV’EZE}ZDB
Front end applications query #set($subFromIwT = $context.authorizer.claims.sub)
Order table directly from API t .)
TableName": "serverlesspresso-order-table",
Gateway. "IndexName": "GSI-userId",

"KeyConditionExpression": "#USERID = :USERID",
"ExpressionAttributeNames": {

. . "#USERID": "USERID"
Velocity mapping templates :
modify the incoming request. e onttributevaluest:
"s": "$subFromiwT"
}
1,
"ScanIndexForward": true,
"ProjectionExpression": "PK, SK, orderNumber, robot, drinkOrder, ORDERSTATE, TS"
}
aws
~—1

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CRUD operations

/myOrders - GET
Jorders - GET

)

/orders/{id} - GET o

Jorders/{id} - PUT

Updates are made to the Order table via a
PUT request.

aws
N

Display
app

i

Ordering
app

Barista

app

app

Order Manager service

GET o——
o | —
| —
[| m—|
API DynamoDB
Gateway table
PUT

()

API
Gateway

© 2021, Amazon

Web Services, Inc. or its affiliates. All rights reserve:

Order Manager service as a Lambda function
Version 1

Each operation invokes a Lambda Function

&

API
Gateway

&

API
Gateway

&

|

API
Gateway

&

|

API
Gateway

aws
N

cancel

|

Complete

make

Create

Update DynamoDB
Resume SFN

Update DynamoDB
Resume SFN

Update DynamoDB
Resume SFN

Sanitize order
update DynamoDB
Resume SFN

Application grew more complex over time,
performing multiple tasks to handle
increasingly complex business logic,
leading to

Tightly coupled code base

Slower release cadence

Poor discoverability

Additional complexity

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Order Manager service as a workflow
e

A single APl Gateway end point runs a
Step Functions workflow & o ate

F

A 4 vy

A

,_] Pass
jj Cancel Order

DynamoDB Update Order Record

~| Pass stat | 1ss state
? Complete Order ? Claim Order

\ 4

?
A, Make OR Unmake?

\ 4

| Pa
r_Tj Unmake Order

¥

]

Sanitize order

v

Y . LN 4
(t (' C DE) t
Is Order Valid? DynamoDB Update Order
\ 4
[Pass te
C\LD Construct record

4

& EventBridge Emit Making Order

SuC d state oS S F S kSuccd
L — [
not a valid order a Resume Order Processor

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Communicate o e B *

|
. |
® | service
between micro- oo
1
: QR : Events
~ e i validator ﬁ
services using events | i
. : Ord
' . rder
. Events Events
i Pubh;her < —> processing
| service workflow
|
e e 2
R I
: Order : Events EventBridge
: journey : rules
' service
P e 1 e
C I
: Conflg : Events
e) >
| service
|

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is an event?

USING AMAZON EVENTBRIDGE FOR CHOREOGRAPHING MICROSERVICES

. . . {
« Aneventis defined in JSON et O
i olm ® . . ., "id": "6acd4e27b-1234-1234-1234-5fb02c880319",
¢ DEtall IS appllcatlon SpECIfIC "detail-type"”: "OrderProcessor.OrderStarted”,
"source": "awsserverlessda.serverlesspresso”,
« Envelope attributes are provided by "account”: "123456789012",
. "time": "2021-11-28T13:12:307Z",
Amazon EventBridge S
"detail": {
« Producers create events "userId": "jbesw",
. "orderId": "eYmAfqlLD67vlbdUVilLe D",
« Consumers choose which events to "drinkorder”: {
"icon": "barista-icons_cafe-latte”,

listen to by using rules

"modifiers”: [],
"drink": "Latte"

/- serverlesspresso

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserve

Serverlesspresso events

15 EVETS

ConfigService.ConfigChanged
OrderJourney.AllEventsStored
OrderManager.MakeOrder
OrderManager.OrderCancelled
OrderManager.WaitingCompletion
OrderProcessor.OrderTimeOQOut
OrderProcessor.ShopNotready
OrderProcessor.WaitingCompletion
OrderProcessor.WaitingProduction
10 OrderProcessor.WorkflowStarted
11.QueueService.OrderCancelled
12.QueueService.OrderCompleted
13.Validator.NewOrder
14.QueueService.OrderStarted
15.0rderManager.OrderCompleted

©ONOUTAWN =

serverlesspresso

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

mailto:awsserverlessda.serverlesspresso@OrderManager.MakeOrder

 Serverless—pay only for the events you

[}:_gs Am a ZO I1 process
®
g— EVE I‘It B rl d g e Simplified scaling avoids increasing

costs to sustain and manage resources

A serverless event bus service for

AWS services, your own applications, * No upfront investments, ongoing
and SaaS providers licensing, or maintenance costs

 No specialist knowledge needed

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserve

Event-driven architectures

USING AMAZON EVENTBRIDGE FOR CHOREOGRAPHING MICROSERVICES

« Event flow drives the application

« Events choreograph the services,
while Step Functions orchestrates

the transactions

/- serverlesspresso

Events

1
. Manager <>
| .

service

: QR | Events
i validator >

service

. 1
Publisher Events
service

@ EventBridge

Event bus

Events

D —

Order
processing
workflow

© 2021, Amazon

Web Services, Inc. or its affiliates. All rights reserve

Event-driven architectures

USING AMAZON EVENTBRIDGE FOR CHOREOGRAPHING MICROSERVICES

« Event flow drives the application =
- Events choreograph the services, oder | o B Eventorioe o
while Step Functions orchestrates Manager € 5
the transactions
. . i QR i Events
+ Add new microservices as event | validator >
consumers without changing oo
EXiSting COde i Publisher i& PN grr(;j;rssing
 service | workflow
« Microservices emit events
I : Order i Events EventBridge
independently of consumers - order
' service i
i Config i A :
' service

serverlesspresso

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserve

aws
~—

Handling async responses
with real-time updates

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Handling response values and state for
asynchronous requests

Client Service A Service B
< é .
Ack
No return path to provide further information E
beyond the initial acknowledgement
Asynchronous
events

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tracking an inflight request: Polling

— Endeint

Please do a thing. » Initial request returns a tracking identifier

pd
'~

« Create a second API endpoint for the front end to
check the status of the request, referencing the
tracking ID

Is it ready yet?

pd
~

« Use DynamoDB or another data store to track the
state of the request

Is it ready yet?

Is it ready yet? - Simple mechanism to implement

&
~

Here's the DATA
Is it ready yet?

« (Can create many empty calls

« Delay between availability and front-end notification

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserve

Tracking an inflight request: WebSocket

— Endpoint
Please do a thing.

> e A bidirectional connection between the front end
OK client and the backend service

pd
T~

* Your backend services can continue to send data back
to the client by using a WebSocket connection

 Closer to real time

« Reduces the number of messages between the client
and backend system

N

Here's the DATA

« Often more complex to implement

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Web applications often require partial information:

mera ail B 20:33 awm) <Camerau'! 20:34 @) < Camera ul! B 20:34 o)
AA @ order.serverlesscoffee.com © AA @ order.serverlesscoffee.com © fesseoffeeicom
& serverlesspresso
@) serverlesspresso E serverlesspresso
- Order #1
ueue

Order #1

Ready for collection
our o

75%

Completion percentages Continuous data changes

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event updates

i " | l
. Front end application ; E AWS Cloud
Subscribe to toplc Subscriptions m AWS loT Core
‘ M
Ej Messages
AWS SDK ' Messages loT topic Publlshlng
|) function

Front end uses AWS SDK to subscribe to a topic based on user’'s unique user ID.

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event u

Front end application E AWS Cloud

Subscribe to topic Subscriptions

o S

AWS SDK EMessages .

pdates

M AWS loT Core
O

loT topic

Messages .

Publishing
function

Receives messages published by the backend

aws
N

to this topic.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event updates

Front end application E AWS Cloud

Subscribe to topic Subscriptions

M AWS loT Core
@ [j ‘ Messages

, loT tobi Publishing
AWS SDK 5 Messages o1 topic function

Messages are categorized using topics. Topic names are UTF 8 encoded strings.

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

Front end application uses pub-sub to “listen” for event updates

E AWS Cloud r

Subscribe to topic ESubscriptions % AWS loT Core
@ -— JUOO | vesages

AWS SDK i i] Messages loT topics
=

o i i

Front end application

Publishing
i services |

The 10T core service manages the WebSocket connection between backend publishers
and front-end subscribers.

This enables fanout functionality to thousands front-end devices.

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using AWS loT Core for real-time messaging

The lotData class in the AWS SDK returns a client that uses the MQTT protocol

Front End app

mgttClient.on ('connect', function () {

console.log('mgttClient connected’) Once the frontend
}) application establishes
the connection, it returns
mgttClient.on('error', function (err) { messages, errors, and
console.log('mgttClient error: ', err) connection status via
}) callbacks.

mgttClient.on ('message', function (topic, payload) {
const msg = JSON.parse (payload.toString())
console.log('IoT msg: ', topilic, msqg)

})

adws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Combining multiple approaches for
your front-end application

Many front-end applications can combine synchronous and asynchronous response models.

Serverlesspresso sends an initial synchronous request to retrieve the current “state of things.”

o /] SGI‘VEI".ESS]DI’GSSO
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Combining multiple approaches for
your front-end application

Many front-end applications can combine synchronous and asynchronous response models.

Barista :
app i Subscribe to topics m m ‘

Lambda

| 1T To
| Clelis function

Simultaneously the front end subscribes to global and user-based IoT topics.

SHAH serverlesspresso

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Combining multiple approaches for
your front-end application

Asynchronous backend processes

| |
B W D5
API | |
o [| m— o]
. ' i Gaf::':/ay DyzzngB : Publisher service
—) e HEO
Barista : ‘
app | Publish update B
|_

Lambda
function

: loT Topics

New orders are posted to the application, and processed asynchronously, with updates published
to the font end via the 10T topic.

(\(@ serverless pPresso
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What does it cost to run this workload?
We can serve up to 960 drinks to 960 customers every day

Service Daily cost With Free Tier

AWS Amplify Console $0.28 Free
Amazon AP| Gateway $0.01 Free
Amazon Cognito $0.00 Free
Amazon DynamoDB $0.01 Free
Amazon EventBridge $0.01 Free
AWS loT Core $0.01 Free
AWS Lambda $0.01 Free
Amazon SNS $7.98 $7.98
AWS Step Functions $0.29 Free

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Learn about the AWS Free Tier:
g\\(‘@% serverlesspresso https://aws.amazon.com/free

Summary

L—

/- serverlesspresso

| An event driven coffee ordering app
built with serverless architecture

Use Step Functions to orchestrate resources within a microservice
Use events to communicate between microservices

Use loT Core to maintain open connection for asynchronous responses

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A New Blogs Videos Learn Events ~ Patterns

Welcome to
Serverless
L and

This site brings together all the latest blogs, videos, and
training for AWS Serverless. Learn to use and build apps that
scale automatically on low-cost, fully-managed serverless

architecture.

Learn More

About

For more serverless learning resources, visit:
https://serverlessland.com

Thank you .c*
ye \ge

aws

N © 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

goto;

DON'T FORGET TO
RATE THE SESSIONS

#GOTOaar

Rate a minimum of 5 sessions and
claim your reward at the
Registration Desk at the Trifork Hall

