
For the Love of
Commodore 64 Music

Ole Friis Østergaard



Ole Friis Østergaard

Engineer at

@olefriis
github.com/olefriis
Blog: olefriis.github.io
Play Stunt Car Racer in your browser: olefriis.github.io/play

Me Me Me

https://twitter.com/olefriis
https://github.com/olefriis
https://olefriis.github.io/
https://olefriis.github.io/play/


Agenda



I Love Commodore 64 
Music!



But Not Just the ”Sound” –
the Music!



Others too – online collections of 
Commodore 64 music, various 
players, wikis, even live bands 
playing Commodore 64 music.



But I also want to 
experiment with the 

music



Vision: Allow people to 
experiment with 
Commodore 64 Music



But First…
What is a Commodore 64?





Solving Tech 
Issues Back 
Then…



Commodore 
64

64 KB of RAM

MOS 6510 processor (8 bit, 16 bit 
addressing)

1 MHz

Tape drive, later also floppy disk drive

320x200, 16 color image output

Sound: SID (Sound Interface Device)





How Did it Sound?



Paperboy – Mark Cooksey



Bubble Bobble – Peter Clarke



Outrun – Ian Crabtree



1942 – Mark Cooksey



Thing on a Spring – Rob Hubbard



Commando – Rob Hubbard



Last Ninja – Ben Daglish



Anyhow… the Music!



High Voltage SID Collection (HVSC):
https://www.hvsc.c64.org

All the music from the Commodore 64 
games, in “.sid” format!

https://www.hvsc.c64.org/


Mission: Understand the 
SID Format and Convert it 
to Other Formats

(And do it in Ruby)



Step 1: Learn the SID File 
Format



SID File Format

+00 magicID: 'PSID' or 'RSID’
This is a four byte long ASCII character string containing the value 0x50534944 or 0x52534944

+04 WORD version
Available version number can be 0001, 0002, 0003 or 0004

+06 WORD dataOffset
This is the offset from the start of the file to the C64 binary data area

+08 WORD loadAddress
The C64 memory location where to put the C64 data

+0A WORD initAddress
The start address of the machine code subroutine that initializes a song

😱the C64 binary data area!😱



Partial Commodore 64 
Emulator Required!



CPU:
MOS 6510

Relatively simple processor

One 8-bit accumulator register, two 8-bit index 
registers, an 8-bit stack pointer, a 16-bit program 
counter, and a status register

14 addressing modes (absolute, use index registers, 
relative to accumulator, use indirect index registers, 
…)

57 instructions

In total, 256 combinations of instructions with 
addressing modes



SID Chip:
MOS 6581 / 
8580

12V (6581) / 9V (8580)

3 voices

4 wave forms (triangle, saw, pulse, noise)

16 volume levels (4 bit)

Attack-Decay-Sustain-Release (ADSR)

Filters

Ring modulation



I don’t really want to 
spend time on a MOS 

6510 emulator, but 
there was no such Ruby 

gem…



2 Hours and a 
Hack Later…

• (Don’t look! J )



However, no way around 
emulating the SID



The Original SID Specification



The Original SID Specification





The Original SID Specification



Attack-Decay-Sustain-Release

Time

Volume

GATE=1 GATE=0
Attack Rate Decay Rate

Sustain Level

Release Rate



The Original SID Specification



The Original 
SID 

Specification



The Original SID Specification



Remember, we are not 
trying to do an authentic 
SID emulation



Playback: Sonic Pi



Let’s try to implement (parts 
of) the SID specification!



We did it!



But…



Can’t we get the music in a 
format for further refinement?



sidtool



Create midi 
files, 
experiment!



Links

Sonic Pi: https://sonic-pi.net
MOS 6581 (SID) specification: 
http://archive.6502.org/datasheets/mos_6581_sid.pdf
High Voltage SID Collection: https://www.hvsc.c64.org
jsSID: https://github.com/jhohertz/jsSID
sidtool: https://github.com/olefriis/sidtool
Code for this presentation: https://github.com/olefriis/c64-music-
presentation

https://sonic-pi.net/
http://archive.6502.org/datasheets/mos_6581_sid.pdf
https://www.hvsc.c64.org/
https://github.com/jhohertz/jsSID
https://github.com/olefriis/sidtool
https://github.com/olefriis/c64-music-presentation


The Last Ninja
Into the Wastelands

Ben Daglish
1966-2018



Thank you!


