
codescene.com@AdamTornhill

Code Red: The business impact of code quality

June 2022

10 years of trauma & research in technical debt

@AdamTornhill

“Technical debt is code that’s more expensive to

maintain than it should be.”
Software Design X-Rays, 2018

What is Technical Debt?

What we actually know:
Research on Technical Debt

Waste
Software developers spend 23-42% of their work week dealing with technical debt and
bad code.1, 2, 3

1 Besker, T., Martini, A., Bosch, J. (2019) “Software Developer Productivity Loss Due to Technical Debt”

2 Stripe, (2018), “The Developer Coefficient: Software engineering efficiency and its $3 trillion impact on global GDP”

3 https://codescene.com/technical-debt/whitepaper/calculate-business-costs-of-technical-debt.pdf

4 Sultana, K. Z., Codabux, Z., & Williams, B. (2020, December). Examining the relationship of code and architectural
smells with software vulnerabilities.

Vulnerabilities
There is a statistically significant correlation between software vulnerabilities and code
smells like Brain Classes, complex implementations, and large classes.4

https://codescene.com/technical-debt/whitepaper/calculate-business-costs-of-technical-debt.pdf

Technical Debt: where we are as an industry

Research finds that developers are frequently forced to introduce new Technical
Debt as companies keep trading code quality for short-term gains like new features.1

1 T Besker, A Martini, and J Bosch. 2019. “Software developer productivity loss due to
technical debt—a replication and extension study examining 1207 developers’ development work”

Why short-term gains win over long-term maintainability:

Hyperbolic Discounting

“There's never enough time to do something right, but there's
always enough time to do it over.”*

Melvin E. Conway (1968). “How Do Committees Invent?”

@AdamTornhill * Thanks, Kevlin Henney

codescene.com@AdamTornhill

Fighting hyperbolic discounting:

Visualise accidental code complexity

Code Health: beyond a single metric

Examples on Code Health Issues

Module Level:
 Low Cohesion, many responsibilities
 Brain Class, low cohesion, large class, at least
 one Brain Method

Function Level:
 Brain Methods, complex functions that centralize
 the behavior of the module
 Copy-pasted logic, missing abstractions, DRY violations

Implementation Level:
 Deeply Nested Logic, if-statements inside if-statements
 Primitive Obsession, missing a domain language

Code health as a proxy for code quality:
1. Detect properties of the code that are known to correlate with

increased maintenance costs and with higher risks of defects.
2. Aggregate the metrics, normalize, and visualize.

Learn More: https://codescene.com/blog/measure-code-health-of-your-codebase/

https://codescene.com/blog/measure-code-health-of-your-codebase/

@AdamTornhill

Ethereum: a decentralized, open-

source blockchain with smart contract functionality

Example on 50 repositories

600k lines of code

https://github.com/ethereum

Visualizing code health

@AdamTornhill

Ethereum: a decentralized, open-

source blockchain with smart contract functionality

Example on 50 repositories

600k lines of code

https://github.com/ethereum

Visualizing code health

@AdamTornhill

Ethereum: a decentralized, open-

source blockchain with smart contract functionality

Example on 50 repositories

600k lines of code

https://github.com/ethereum

Visualizing code health

Examples: a gallery of code

@AdamTornhill

CoreCLR: the runtime for .Net

8.5 million lines of code

https://github.com/dotnet/coreclr

React: a UI library

340k lines of code

https://github.com/facebook/react

codescene.com@AdamTornhill

From “knowing” to knowing:

Quantify the business impact of complex code

Research to quantify the impact of code quality:
scope & data

@AdamTornhill

▶ A quantitive large-scale study of code quality impact.

▶ Data from 39 commercial codebases.

▶ Analysed more than 40 000 software modules.

▶ Many different industry segments.

▶ Tested across 14 programming languages.

▶ Using the CodeScene tool to automated the analyses.

▶ Our research findings are statistical significant and peer
reviewed for the International Conference on Technical Debt
20221

1 Research publication: https://arxiv.org/abs/2203.04374

The costs of low code quality:
why is it so hard to measure?

▶ Organizations don’t know the development costs of individual modules. 1

▶ Hence, related numbers (i.e. on technical debt impact) come from
surveys and self-reported estimates. 2

1. Tracking detailed time in development would be a significant overhead. A few organisations
enforce “Time Spent” to be reported in Jira, but that time is per task level, not per code module

2. Gartner (2021): , McKinsey (2020), Stripe (2018)

We know the staffing costs..

..and we could (in theory)
get the costs per ticket…

..but we have no way of knowing how those costs
are distributed across code of various quality!

source code

Time-In-Development: how do we measure it?

File 1

File 2

Jira Issue X moved to “In Progress”:
starts the sub-cycle time #1 commit #1

cycle time #1

sub-cycle times #1 + #3

sub-cycle times #2 + #3

Time-In-Development:

Data source: Jira

commit #N

cycle time #3

cycle time #3

commit #2

cycle time #2

Data source: Jira + Git

codescene.com@AdamTornhill

The results:

Does code quality matter?

Green Code: Implementing a feature is twice as fast

Healthy Warning Alert

Code Health category

Mean time for implementing a ticket

Re
la

tiv
e

sc
al

e
D

ev
el

op
m

en
t t

im
e

fo
r

co
de

 c
ha

ng
es

0.05

0.10

0.15

additional time spent compared to
healthy code

@AdamTornhill

Red Code: A feature can take up to 9 times longer

Healthy Warning Alert

Code Health category

Uncertainty:
maximum time for implementing a ticket

Re
la

tiv
e

sc
al

e
D

ev
el

op
m

en
t t

im
e

fo
r

co
de

 c
ha

ng
es

0.20

0.40

0.60

0.80

1.00

additional uncertainty compared to
healthy code

@AdamTornhill

Red Code: 15 times more defects

Healthy Warning Alert

Defects by Code Health category

Defects

Re
la

tiv
e

sc
al

e
N

um
be

r
of

 D
ef

ec
ts

0.20

0.40

0.60

0.80

additional defects/rework compared
to healthy code

@AdamTornhill

The programmer perspective:
how low quality code impacts development teams

@AdamTornhill

The most frequent causes of unhappiness:

1. Stuck in problem-solving
2. Time pressure
3. Work with bad code

“[Developers] suffer tremendously when they meet bad code that could have
been avoided in the first place”

Grazitotin, D., & Fagerholm, F. (2019). “Happiness and the Productivity of Software Engineers"

Theory into practice:
how would we use this data?

Code quality constraints a business

▶ Give all stakeholders — devs, product, management —
the same situational awareness of where the strong
and weak parts are.

Fight hyperbolic discounting:

▶ Discussing future risks primes you for starting to
address them.

Build a business case for improvements:

▶ Refactoring and larger improvements can come with a
business expectation.

@AdamTornhill

codescene.com@AdamTornhill

Making it actionable by combining People + Code:

Prioritize large amounts of technical debt

@AdamTornhill

CoreCLR: the runtime for .Net

8.5 million lines of code

https://github.com/dotnet/coreclr

Red Code:

Where do we start?

@AdamTornhill

Hotspots:
Prioritize based on developer behaviour

Interest rate: Code Change Frequency

Hotspots: why you don’t have to fix all tech debt

Key take-aways:

• Most code is in the long-tail. This is low-interest debt.
• Hotspots only make up 2-4% of the total codebase, but attract 20-70% of all development

activity!
• Code health issues in a hotspot are expensive. This is high-interest debt.

Each file in the system

C
ha

ng
e

Fr
eq

ue
nc

y

Prioritize improvements here!

Ignore the long tail

@AdamTornhill

@AdamTornhill

Hotspots:
Prioritize based on developer behaviour

Most code is stable: low interest technical debt

Most development activity is in a small part of the
codebase: high interest technical debt

Interest rate: Code Change Frequency

A look into the Jit package:
Actionable Insights?

@AdamTornhill

14,000 Lines of Code!

Function Level Hotspots

Parse Recommended functions to improve.

Hotspots: X-Ray: gentree.cpp

From https://pragprog.com/book/atevol/software-design-x-rays

https://pragprog.com/book/atevol/software-design-x-rays

X-Ray of gentree.cpp

@AdamTornhill

codescene.com@AdamTornhill

Green Code:
a guarantee for maintainable codebases?

What Is Legacy Code?

“Legacy Code” is typically used to describe code that:

 - lacks in quality, and that

@AdamTornhill

 - we didn’t write ourselves.

The Technical Debt That Wasn’t

@AdamTornhill

Product #1 Product #2 Product #3

?

codescene.com@AdamTornhill

Case Study:

How quick can you turn your current
codebase into legacy code?

@AdamTornhill

Case Study: ASP.NET MVC Core

~180 Contributors

350,000 Lines of Code

Main language: C#

ASP.NET MVC Core

http://ASP.NET
http://ASP.NET

@AdamTornhill

Software Evolution: power laws are everywhere

sorted by contributor

Ad
de

d
lin

es
 o

f c
od

e

Making legacy code: what’s the impact if
one of these people leave?

Case Study: Off-Boarding

@AdamTornhill

Commit: b557ca5
Date: 2016-02-12
Author: Kevin Flynn

Fix behavior of StartsWithPrefix

8 27 src/Mvc.Abstractions/ModelBinding/ModelStateDictionary.cs
1 10 src/Mvc.Core/ControllerBase.cs
1 1 src/Mvc.Core/Internal/ElementalValueProvider.cs
1 39 src/Mvc.Core/Internal/PrefixContainer.cs

Commit: fd6d28d
Date 2016-02-10
Author: Professor Falken

Make AddController not overwrite existing IControllerTypeProvider

8 1 src/Core/Internal/ControllersAsServices.cs
48 0 test/Core.Test/Internal/ControllerAsServicesTest.cs
13 0 test/Mvc.FunctionalTests/ControllerFromServicesTests.cs

Commit: 910f013
Date :2016-02-05
Author Lisbeth Salander

Fixes #4050: Throw an exception when media types are empty.

20 1 src/Mvc.Core/Formatters/InputFormatter.cs

Identify the main developers
behind each module

@AdamTornhill

Case Study: ASP.NET MVC Core

Application Code

Test Code

Active Contributors

Former Contributors
(knowledge loss)

Simulated Knowledge Loss

~180 Contributors

350,000 Lines of Code

C#

http://ASP.NET

Mitigate off-boarding risks

Identify risks by combining three properties:

knowledge loss + relevance (hotspot) + impact (complexity).

Limit the data to what’s actionable.

@AdamTornhill

@AdamTornhill

There’s More to Code Complexity than Code

Social Factors Influence how we Perceive a Codebase

Speed + Quality: you can have it all

“Our results indicate that improving code quality could free existing capacity; with 15 times fewer bugs, twice the
development speed, and 9 times lower uncertainty in completion time, the business advantage of code quality
should be unmistakably clear.”

A. Tornhill & M. Borg (2022)

@AdamTornhill

Healthy Warning Alert

0.20

0.40

0.60

0.80

1.00

Quality dimension: where are the risks
and opportunities?

Hotspot dimension: what’s the impact
and priorities?

Tools + examples: https://codescene.com/

Blogs on Software Evolution, Technical Debt, and Code

• https://www.codescene.com/blog/

• https://adamtornhill.com/

behavioral code analysis techniques, tech

debt, teams, microservice analyses

Adam Tornhill

https://twitter.com/AdamTornhill

https://se.linkedin.com/company/codescene

https://codescene.com/
https://www.codescene.com/blog/
https://adamtornhill.com/
https://twitter.com/AdamTornhill
https://se.linkedin.com/company/codescene

