

Applying Conway
Building organizations that scale

Henrik René Høegh

Consultant

Henrik Høegh
Cloud Native, Scaling organizations

Twitter: @HenrikHoegh

LinkedIn: linkedin.com/in/henrikrenehoegh

Contact: henrik.hoegh@eficode.com

Melvin Conway

Any organization that
designs a system will
produce a design whose
structure is a copy of the
organization's
communication structure

https://en.wikipedia.org/wiki/Conway%27s_law

The Monolith

In the beginning, software was
implemented as one chunk of code.

Monoliths in its purest form, does not
scale horizontally, only vertically.

The nature of a
monolith

A classic monolith has all code deployed at the same
time, in one chunk.

Deployment

With VM technology you CAN add more hardware to
one VM, but at some point it will stop adding value.

Underlying resources

As a monolith only scales vertically, there is a limit to
how much you can scale it. At some point, the battle is
lost. Horizontal scaling is extremely complex.

An accident waiting to happen

Processing

Resource E

Resource
D

Resource CResource
B

Resource A

Storage

Resource F

A
N

IM
A

TE
D

Vertical
scaling

Possible to the extent
of the underlying

server

Horizontal
scaling

Virtually impossible
with monolith -

technically
challenging

Inertia
building

As the monolith grow,
Inertia grows as well,

making scaling
harder

The monolith

A
N

IM
A

TE
D

The distributed monolith

In an attempt to scale a broken up monolith,
dependencies rise, acting as inertia to scaling.

The nature of a
distributed monolith

A distributed monolith is simply a monolith that has
been split into multiple different parts.

Splitting the monolith

It can be deployed to multiple VM’s as it’s no longer one
chunk of code.

Underlying resources

It’s still a monolith as every part is hard coupled to each
other, and expect the other parts to always be up. So an
upgrade to one part, will mean downtime for those
depending on it.

Still a monolith

Processing

Resource E

Resource
D

Resource C

Resource
B

Resource A

ProcessingProcessing

Storage

Resource F

Dependencies

A
N

IM
A

TE
D

Vertical
scaling

Possible to the extent
of the underlying

server

Horizontal
scaling

Easier to scale then a
classic monolith.

Inertia
building

Inertia builds
up rapidly, as

dependencies
between services

keep growing

The distributed monolith

A
N

IM
A

TE
D

Decoupled services

Decoupled services does not depend on
one another directly.

They are independently deployable,
scalable and don't build up inertia.

The nature of
decoupled services

Every service is only depending on a queue or API
gateway solving the dependency problem of monoliths.

Removed dependencies

Hard contracts between services and the queue allows
them to scale and work independently of each other.

Clean interfaces is a must

These services can be scaled horizontally and vertically
without any inertia building up

Scaling

Processing

Resource
E

Resource
D

Resource
C

Resource
B

Resource
A

Processing Processing Processing Processing

Queue or API gateway

Storage Storage Storage Storage Storage

A
N

IM
A

TE
D

Vertical
scaling

Possible to the extent
of the underlying

server

Horizontal
scaling

Easier to scale then
any monolith

Inertia
building

Inertia is not present
in the code, as it is

moved to the
decoupling layer.

Decoupled services

A
N

IM
A

TE
D

Services
size

The size of a service
should never be

bigger than the team
implementing it

Decouple
it

You need to decouple your
services with something

stable, like a queue or API
gateway

React on

Services should react
on events only

Three rules for decoupling

By Dmitry Sutyagin - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2845146

A
N

IM
A

TE
D

Let’s hack Conway
- doing an inverse Conway

Monoliths, being classic or distributed, will
introduce dependencies between the teams that
need to implement it. It’s inevitable.

These dependencies are the core problem when
scaling an organization.

Monolithic
architectures

Decoupled architectures don't build up
dependencies between teams, as these are
dealt with in planning groups instead of in the
team that implements it.

In open-source they are called Working Groups
and SIG (Special Interest Group)
https://en.wikipedia.org/wiki/Special_Interest_Group

Decoupled
architecturesSIG

Sprint / Kanban
release

Teams DTeams CTeams BTeam A

SIG
Sprint / Kanban

release

SIG
Sprint / Kanban

release

SIG
Sprint / Kanban

release

Working Groups

Git Git Git Git

Kubernetes is the second largest project on
GitHub. Every service is decoupled from the
others via the API server.

The other services does not need to be
running, and each service does not need to
know about the others.

An example

Kube-proxyKubelet

API server

Controller
manager Scheduler

ETCD

A
N

IM
A

TE
D

One team

In the beginning, one
team can start a

project and deliver
value

Eg. Kubernetes

Zero scale

Component

When the team is too
big, it can be split up

into components

Eg. API-Server,
Kubelet, Scheduler

Small scale

Topics

When the components
become too crowded, we

break the system into
topics

Eg. Auth, Docs, Network

Large scale

Evolution of growth

A
N

IM
A

TE
D

Committees are named sets of people that are
chartered to take on sensitive topics.

Flat hierarchy
Horizontal Domain /

Vertical

Working
groups

Project

SIG

Sub
projects

Working
groups

Working
groups

Committee

User
groups

SIG

Sub
projects

SIG

Sub
projects

Special Interest Groups (SIGs) are persistent
open groups that focus on a part of the project.

Subprojects are smaller groups that can work
independently.

Working Groups are temporary groups that are
formed to address issues that cross SIG
boundaries. Working groups do not own any
code or other long term artifacts.

A
N

IM
A

TE
D

https://github.com/kubernetes/community#governance

We can now map issues and tasks all the way
from workgroup to an issue in a SIG group.

Some issues are bugs that gets assigned
directly to a SIG, others from a workgroup.

Mapping tasks
SIG

Storage

Workgroup :
wg/api-expression

SIG
CLI

SIG
Network

SIG
API-Machinery

issues/
81123

issues/
81127

issues/
94275

issues/
94339

issues/
95162

Working group :
wg/security-audit

Only SIG owns code !

A
N

IM
A

TE
D

https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/95162
https://github.com/kubernetes/kubernetes/issues/95162

SIG/WG Issues

Could we map this from GitHub into Jira?

Converting to
Jira

SIG
Storage

Workgroup :
wg/api-expression

SIG
CLI

SIG
Network

SIG
API-Machinery

issues/
81123

issues/
81127

issues/
94275

issues/
94339

issues/
95162

Working group :
wg/security-audit

- Workgroups only exists as labels
- SIG only exist as labels
- Only SIG owns code
- Issues without a WG or SIG label are invalid

A
N

IM
A

TE
D

https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/95162
https://github.com/kubernetes/kubernetes/issues/95162

SIG
Storage

Workgroup :
wg/api-expression

SIG
CLI

SIG
Network

SIG
API-Machinery

issues/
81123

issues/
81127

issues/
94275

issues/
94339

issues/
95162

Working group :
wg/security-audit

Component
Storage

Epic :
api-expression

Component
CLI

Component
Network

Component
API-Machinery

issues/
81123

issues/
81127

issues/
94275

issues/
94339

issues/
95162

Epic :
security-audit

GitHub Jira

A
N

IM
A

TE
D

https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/95162
https://github.com/kubernetes/kubernetes/issues/95162
https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81123
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/81127
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94275
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/94339
https://github.com/kubernetes/kubernetes/issues/95162
https://github.com/kubernetes/kubernetes/issues/95162

Sigs and the Kubernetes
community - Joe Beda

It’s all about
distributing decisions.

The guy on stage - Henrik Høegh

… and decoupling
them from
execution

Takeaways
What does this look like?

Green team

Yellow team

Red team

We don't want hard coupled teams

Green team

Yellow team

Red team

Working
group Time saved

We want them decoupled so they can deliver independently

It’s not
about speed

It’s about making teams

independently deployable

How team
sizes fit

15 connections

Red team
6 people

AKA the startup

66 connections

Red team
12 people

AKA the monolith

15 connections15 connections

Red team
6 people

Yellow team
6 people

30 connections, but no communication

AKA the silos

15 connections15 connections

Red team
6 people

Yellow team
6 people

34 connections, with communication

AKA the distributed monolith

15 connections15 connections

Red team
6 people

Yellow team
6 people

Working
group

4 connections

Working
group

4 connections

Working
group

4 connections

AKA the decoupled system

Multiple teams
Owning the same code

SVC-4SVC-1
SVC-1 SVC-2 SVC-3 SVC-4

Queue

DB DB

Basically

We want this

SVC-4SVC-1
SVC-1 SVC-2 SVC-3 SVC-4

Queue

DB DB

Not this

But
Utilization will drop then ?

What we do
At -

We build communities
And have owners

SIG = community domain

Practice @Scale

Practice
SArchitecture

Practice Agile

Practice Cloud

Business
Marketing

Business Sales

Business ….

Working group
“The DevOps guide”

Working group
Transformation @Scale

WG Owners

WG Owners

Outcome

Outcome

Long living Short lived

Outcome

henrik.hoegh@eficode.com

HenrikHoegh

+45 25 188 420

Henrik René Høegh

Thank you!

