


Drinking a river of IoT data with Akka.NET

Hannes Lowette



AGENDA

> Introduction to Akka.NET

> The problem domain

> How Akka.NET fits in

> Implementation details

> Beyond this talk



Introduction to Akka.NET
History & Principles



Origin of the Actor model

Designing software inspired by physics (1973):

• Carl Hewitt, Peter Bishop & Richard Steiger

• Many independent microprocessors

Further refinement:

• 1973: Operational semantics for the Actor model - Irene Greif

• 1975: Axiomatic laws for Actor systems - Henry Baker & Carl Hewitt

• 1981: Denotational semantics based on power domains - William Clinger

• 1985: Transition-based semantic model – Gul Agha



Achieving high availability

Ericsson AXD 301 Telco System:

• Invention of Erlang

• Fault-Tolerant

• Distributed

• Concurrent

• 2 million lines of code

• 99,9999999% uptime (9 nines)

~ 31ms downtime per year



Evolution of Akka.NET



2015 – Year of the .NET Actors

• Feb 2015: Project Orleans v 1.0.0

• April 2015: Akka.NET v 1.0.0

• April 2015: Service Fabric Reliable Actors v 1.0.x



Why 2015?



Classic scaling under stress

• Smartphones

• Internet of Things

• Explosion of the web



Processor evolution



Parallelism is the salvation

Problems with parallelization:

• Shared State

• Race Conditions

• Blocking calls

• Deadlocks

• Serialized code



Amdahl’s Law



The promises of the actor model

• High parallelization

• Stateful systems

• Reactive Patterns

• Fault tolerance (self healing)



So how?



The Actor

Simple object

• Holds its own state (no shared state)

• Inbox:

• Messages (the only input)

• Processed in order

• 1 message at a time

→ Guaranteed single threaded 



The simplest actor



Messages

• Simple objects

• Immutable!

• Akka.NET does not enforce this

• DO NOT try to exploit this

• Might cross machine boundaries

• Throughput: 

• Claimed: 50 M/s on a single machine

• Well over 1 M/s on my laptop



An immutable message



The ActorSystem manages

• Actor life cycles

• Messaging

• Inboxes

• Thread scheduling

• The system event bus

• …



Creating an ActorSystem



Actor hierarchy

• Actors can have 

children

• Position = address

• 3 default actors:

• /

• /user

• /system



Supervision

• Errors are escalated to the parent

• Parent decides OR escalates 

further

• Action:

• Resume

• Stop

• Restart

• Strategy:

• OneForOne: only the failing actor

• OneForAll: all children



Development ideas

• Split workloads into small chunks

• Make separate actors for every 

task

• Push risk to the edges, 

handle faults there

• Avoid ‘bottleneck actors’



Design Patterns

• Fan-out Pattern

• Parent Proxy Pattern

• Consensus Pattern

• Character Actor

• …



The Character Actor



The problem domain
What are we going to solve?





Connection situation



What do we want?

Storage of historic usage

• Storage of (normalized) values

• Plotting of consumption graphs

• Comparison of time periods 

Alerting

• Momentary consumption threshold

• Periodic consumption threshold



Reading vs Consumption



Momentary threshold alert



Periodic threshold alert



How Akka.NET fits in
What part of the solution can Akka.NET provide?



Your typical IoT stack



Backend



Good fits:

• Gaming backends

• Trading systems

• Internet of Things

• Parallelizable calculations

• … any stateful high throughput application

It doesn’t have to be the whole solution!

Don’t be a magpie!



Implementation details
How can you use Akka.NET in this scenario?



Parts we are going to look at

1. Getting messages to the ActorSystem

2. Normalizing measurements

3. Persisting Data

4. Restart behavior



Getting messages to the ActorSystem
Akka.NET Remoting

Proxy Actors



Akka.Remote

ActorSystems can talk to other ActorSystems

• Remote addressing

• Remote deployment

• Remote messaging

• Location Transparency

• Multiple transports





DeviceActorProxy



DeviceActorProxy … continued



DevicesActor



Normalizing Measurements
Making sure actors get consistent data



Why Normalization?

Writing logic is easier with consistent values:

• Exact timestamps

• No gaps

• Incorrect values filtered

• …

Deal with it in one place



Timestamp correction & buckets



Gap filling

• Do we want to fill this gap?

• If so, how?

• Do other Actors need to know?

If yes, add a flag to the 

message

There is no ‘right’ answer



Possible solutions

Not filled Peak at start

Peak at end Peak in center

Evenly split

Trend line



Actors



Persisting Data
Saving what cannot be lost



Akka.Persistence

Actors that recover their state when (re-)created:

• Inherit from PersistentActor

• Give it a unique PersistenceId

• Persist Events with the Persist(…) command

• Persist snapshots with the SaveSnapshot(…) command

• Register Recover<T>(…) handlers to restore state



Akka.Persistence



Akka.Persistence



Akka.Persistence



Actors



Restart Behavior
How to get going again after a restart



After a system restart

Recreating Actors:

• Query the DB on startup

• Create the required Actors

How to get Actor state back:

• Minimize the number of actors that need to recover state

• 1 PersistedActor per device = ideal

• Other actors query that actor for the state they need



Actors



Beyond this talk
The stuff that we didn’t talk about …



Make Akka.NET production ready

• Configuration: 

HOCON

• Clustering: 

Run across multiple machines

• Logging:

Adapters for Nlog, SeriLog, etc.

• Dependency Injection: 

Akka.NET supports DI for your actors

• Production monitoring: 

Phobos



Start Learning

• FREE Akka.NET Bootcamp by Petabridge:

https://github.com/petabridge/akka-

bootcamp 

• PluralSight courses:

There are some good courses available!

• Petabridge blog:

https://petabridge.com/blog/ 

• Petabridge remote training (paid):

Worth it when you have serious questions



Deployment

1. Pause the process that reads from the event stream

2. Wait for processing to end

3. Deploy the Akka.NET cluster

4. Re-create actors (triggering Persistence restores)

5. Resume sending from the event stream

→When done right, you can do this without losing data!

→AUTOMATE THIS!



Conclusion

1. Check if your problem domain is a fit for Actors

2. Decide which part of the solution will be Akka.NET

3. Design your actor hierarchies appropriately

4. Normalizing data helps a lot

5. Think about deployment & recycles



About me

Hannes Lowette

.NET Consultant & Competence Coach 

@Axxes_IT

• @hannes_lowette

• #20086521

Code samples and slides at :

github.com/Belenar/Axxes.AkkaDotNet.SensorData



Questions?




